=~ NRGI-T7Y]

Y NG/~ ES

FOR »77
GRAPHICS APPLICATIONS UTILIZING
PARALLEL PROCESSING

July 23, 1990

ir (NASA-CR=-18671%) GRAPHILS APPLICATIONS NF0—255% 4%
UTILIZING PARALLEL PROCESSING Final Report,
1 Feb. 1989 - 30 Jun. 1990 (Purdue Univ.)
77 p CSCL oyn unclas
. G3/61 02947487

|

l

: John R. Rice o
Department of Computer Science
___Purdue University

West Lafayette, IN 47907




FINAL REPORT
FOR

GRAPHICS APPLICATIONS UTILIZING
PARALLEL PROCESSING

Principal Investigator:

Technical Officer:

Date:
Grant Period:

Grant Number:

Dr. John R. Rice

Department of Computer Science
Purdue University

West Lafayette, IN 47907

Mr. Donald L. Lansing

NASA Langley Research Center
M/S 125A

Hampton, VA 23665-5225

July 23, 1990

February 1, 1989 - June 30, 1990

NAG-1-789



.—?""
N
This paper is the resulf of research conducted to develop a parallel graphic 4 .
application algorithm to depict the numerical solution of the one-dimensional wave
equation, the vibrating string. The research was conducted on a Flexible Flex/32
multiprocessor and a Sequent Balance 21000 multiprocessor. The wave equation is
implemented using the finite difference method. The synchronization issues that arose
from the parallel implementation and the strategies used to alleviate the effects of the
synchronization overhead are discussed.

LY

Introduction

The objective of this research is to develop a methodology for the implementation
of a parallel graphic application algorithms for multiprocessor computers. The application
algorithm used in this research is the one-dimensional wave equation, the vibrating string.
The immediate goal of the research is to develop an algorithm that will solve and depict
the numerical solution of the one-dimensional wave equation. The programming language
used to implement the parallel graphic application algorithm is the Force programming
language. The graphic routines implemented to depict the numerical solution of the one-
dimensional wave equation are designed for use with the 4107 Tektronix Graphic
Terminal.

The depiction of the numerical solution of the one-dimensional wave equation was
chosen as the focus of this research because this equation is the foundation of all wave
motion. The major research emphasis is placed on determining an approach for the
depiction of the numerical solution. This approach involves determining the
complications and benefits that are derived when the one-dimensional wave equation is
implemented, solved, and depicted using a multiprocessor computer.

Portions of this research was conducted in two different multiprocessor
environments. In one multiprocessing environment, multiple processors are dedicated to
the execution of parallel programs, one program at a time. In the other environment, no
processors are dedicated, and several programs (sequential and parallel) can be
executed concurrently.

Each programming environment had it's impact on the execution of the
implemented sequential and parallel algorithms. However, the major concern in both
environments deal with the synchronization of the processors in order to achieve the
desired results.

Approach

After the application was chosen, the depiction of the one-dimensional wave
equation, a sequential algorithm was chosen that solved this equation. The original
sequential algorithm was implemented and modified to meet some of the requirements
imposed by the immediate goal of this research. The modifications to the implemented
sequential algorithm were implemented in cycles that consist of 1) implementation, 2)
testing, and 3) restructuring of the modified sequential algorithm. The restructuring of the



"

L

sequential implementation involves the addition of variables, and the reordering and
addition of blocks of code. At an unspecified point following a series of these cycles, the
results are recorded.

The parallel implementation is developed by adding parallel constructs, one at a
time, to the implemented sequential version of the vibrating string algorithm, working from
the exterior to the interior of the sequential algorithm. The parallel constructs are
implemented in a series of cycles consisting of 1) implementation of a parallel construct,
2) testing, and 3) restructuring the algorithm. Testing the parallel implementation involves
executing the parallel program with different numbers of processors. It should be noted
that an implemented parallel algorithm that works for 2 processors may or may not work
for 4, 8, or 16 processors due to synchronization problems and the lack of data coherency
[Dubois] through the use of shared variables. The restructuring of the parallel
implementation involves the addition of private and shared variables, and the reordering
and addition of blocks of code.

The approach taken to develop the parallel implementation is performed in a lock-
step manner with the sequential implementation. As the desired results are achieved in
the sequential implementation, a parallel implementation is developed to achieve the
same results. Once the desired results are achieved for the numerical solution of the one-
dimensional wave equation in the parallel implementation, the graphic routines are
implemented in the sequential implementation. The above series of cycles are repeated
for sequential implementation as well as for the parallel implementation, respectively, in
order to achieve the desired graphical results.

Equations
The general one-dimensional wave equation [Slater][Burden] has the form
2 2
dU_Adu_ (1)
i ol
The general equation produces a depiction of the vibrating string with no oscillating

motion, a standing wave[Slater]. In order to produce the desired oscillating motion, an

external force [Slater], F,, , is added to obtain

812 ax2

F oy 2)

A damping force [Thomas][Slater], et is used to create a damped motion for the
vibrating string



{ ]

|

2 2

This is the modified one-dimensional wave equation that is implemented. The
damping force causes the vibrating string to return to it’s initial resting state after a specific
number of iterations.

The other equations used in this research are used to calculate the
speedup[Oleinick][Quinn] and efficiency[Quinn] achieved by nproc processors,

speedup(nproc processor(s)) = runtime(1 processor) 4)
runtime(nproc processor(s))

efficiency(nproc processor(s)) = speedup(nproc processor(s)) (5)
nproc processor(s)

where nproc represents the number of processors.
Programming environment

The programming language used to implement the sequential and parallel graphic
application algorithms was the Force programming language [Jordan ]. The Force
programming language is an extended version of Fortran 77 with parallel constructs. The
Force language is also portable. The sequential and parallel algorithms were initially
developed on the Flexible Flex/32 multiprocessor. The Flex/32 was a multiprocessor that
initially contained 20 processors. Two of the processors were dedicated as front end
processors, and the remaining 18 processors were dedicated to the concurrent execution
of parallel programs, one program at a time.

When the Flex/32 multiprocessor was no longer available, the implemented
sequential and parallel algorithms were ported to a Sequent Balance 21000
multiprocessor with 16 processors. The portability of the Force programming language
required minor changes to the sequential and parallel implementations. The Sequent
multiprocessor is used as a multiuser multiprocessor{Sequent]. This multiprocessor
[Oleinick][DuBois][Quinn] can execute several programs (sequential or parallel)
concurrently and all processors are treated as equals. These programs can be system or
user programs. The Flexible and Sequent multiprocessor have Unix based operating
systems. The graphic routines used to depict the solution were developed for the
Tektronix 4107 graphic terminals.

Parallel Constructs

The parallel constructs[Jordan] supported by the Force programming language
and incorporated in the parallel implementation are barriers, critical sections, parallel



|

{ ]

loops, and private and shared variables. Busy waits (spin locks) [DuBois][Dining] are also
used to insure synchronization among the processors. This construct was designed as a
very tight loop that allows the spinning processor to resume execution with a fast
response time to a corresponding semphore[Dining].

The barrier construct [Jordan][Dubois] is used to insure that only one processor
executes the block of code that it contains. This construct requires that all of the
processors used to execute a parallel program pass through this construct and the last
processor to reach the beginning of the barrier executes the sequential code the construct
encloses. This construct is used to read all user input, to output the timing resuits, and to
insure the stability of the numerical solution[Slater][Burden]. The critical sections are used
to provide mutual exclusion[Dining] for some calculations performed on some shared
variables. This construct is mainly used to implement counting semaphores[DuBois] that
are associated with row computations and the incrementation of ioop control variables.

Two different versions of parallel loops are implemented, preschedule and
selfschedule[Jordan]. These different forms of a general DO-CONTINUE loop allow the
body of a loop to be executed in parallel. In the preschedule loop, the work distribution is
determined before the loop is executed and this distribution is based on the number of
processor used to execute the parallel program. Each processor is assigned a
predetermined number of iterations to execute. The processors are synchronized after the
loop is completed. The selfschedule loop allows each processor to request more work as
it's respective work is complete. This is an effort to achieve better load balancing among
the processors.

A private copy of some of the shared variables that remained constant throughout
the execution of the parallel implementation of wave equation are also stored as private
variables in an effort to alleviate some of the possible bus traffic due to memory contention
[Stenstrom][Bhuyan]. An example of this duplication concerns the use of the array
dimensions. In the worst case, 16 processors may attempt to access a particular shared
variable at the same time. All of the arrays used were implemented as a shared variable.
In the case of concurrent access to the same array element, data coherency is maintained
by enclosing the computations associated with these variables in critical sections
[DuBois][Bhuyan]. Another example is computations involved in incrementing a counting
semaphore.

Graphic Routines

The graphical routines implemented to depict the numerical solution of the one-
dimensional wave equation are centered around the use of routines that manipulate
pixels. Pixel manipulations were chosen because pixel operations are a fast way to
display and modify images on the screen. These operations also give a more realistic
view of the vibrating string as oppose to the use of line segments which are part of the
vector graphics. The viewport used in these implemented algorithms are for the for the
full on screen viewport supported by the Tektronix 4107 Graphic Terminal. Each pixel
that is used to depict the numerical solution of the one-dimensional wave equation



{

{l

wnn v

(11

i

IR

corresponds to a location in the pixel viewport. The pixels that depict the numerical
solution are viewed as a string of points that represent the vibration string(see Figures
24-29). The other pixels in the viewport are treated as background.

The pixel routines are implemented in such a way that each vibration (movement)
of the string is part of the computations for a complete pixel viewport. This image, or
viewport, is computed and the graphic escape sequences that represents each viewpont
is stored in an array that is used to store M different viewports, one representing each
row of the M X N solution to the wave equation.

The viewport image is stored in a two-dimensional array called LINE (see
Appendices A, B, C; subroutine Runlength Write). The semaphore used to notify the
output processor of the completion of computations for the viewport corresponding to
iteration J is a semaphore called CODARY. Based on the following numerical sequence,
0,1,2,...,M-1, if the viewport corresponding to row J+1(iteration J+1) is completed prior to
the completion for of the viewport corresponding to row J, the output processor enters a
busy wait. Once the Jth viewport has been computed, stored and depicted, the output
processor is now free to increment its counter to J+1. If the corresponding J+1
semaphore has not been set to 1, then the output processor spins until the semaphore
has been set.

Implementation

The wave equation is a hyperbolic partial differential equation[Burden] that has
boundary and initial conditions. The initial sequential algorithm[Burden] computed the
boundary conditions first, then computed the initial conditions, rows 0 and 1. The
algorithm then perform the computations for rows 2,3,...,M-1. This approach was followed
in order to solve the M X N system of equations.

In the parallel implementation, each processor is provided with a copy of the
dimensions of a M X N matrix, variables MM and NN. The matrix is used to store the
numerical solution of the one-dimensional wave equation. The M X N matrix corresponds
to M equations and N unknowns. The elements stored in each row of this matrix
corresponds to each iteration of the vibrating string(see Appendices B and C). Each
processor is also provided with a private copy of the constant variables that are used in
the graphic routines[Tektronix].

The one-dimensional wave equation was initially implemented as a sequential
program. Parallel constructs supported by the Force programming language were
incorporated to implement the first parallel version of the sequential algorithm. This initial
parallel version was centered around the preschedule loops. Another version using self-
schedule loops was developed later.

The flowchart for the implemented sequential algorithm is shown in Figure 1. The
initialization of variables entails reading all user input and performing all initial calculations
related to these input variables. The initialization calculations include the stability



o
{
o

1]

{

IR N

A

[ 111

gi

Ul

L LI

i

1

0

computations. These computations are used to determine if the user’s input will produce
a stable numerical solution. If the results of the stability computations indicate that the
numerical solution will be unstable, the number of time subdivisions is incremented by a
constant integer. If necessary, the stability computations are recalculated until the stability
requirements are satisfied. The program timer is started before the initialization process
is started.

The flowchart for the implemented parallel algorithm, shown in Figure 2, executes
the code pertaining to the initialization of variables by enclosing the above computations
and input in a barrier construct. The program timer is start at the same point, but each
individual processor also has a timer associated with the amount of parallel code it
executes. The individual timers are started after the processor executing the initialization
code enclosed in the barrier construct has completed it's task.

After the computations for the boundary and initial conditions have been
completed, a completion flag is set to signal the output processor that all computations for
row 0 and 1 are completed(see location A in Figure 2). This completion flag is
implemented in the form of a counting semaphore. Once the count reaches NPROC-1,
the output processor proceeds by computing pixel information, starting with row 0. As the
output processor completes the pixels computations for row j, it depicts the results of
these computations. This process is repeated by the output processor, for row 1,2,..., until
a rendezvous has occurred among the NPROC processors. This rendezvous is discussed
below.

The sequential and parallel implementations of the body of the loops used to
compute the boundary and initial conditions are similar the loop used to compute the
interior points for rows 2,3,...,M-1(see Tables 1, 2, 3). These tables show the sequential,
preschedule, and selfschedule implementations of loop 25, respectively. The application
of the finite difference method to Equation (3) produces the equations used to compute
the numerical solution that is store in the array, W(l,J). The use of the finite difference
method leads to a series of multistep computations for the variables, W(l,J+1), as shown
in Tables 1, 2, and 3. The computation for W(l,J+1) depends on the results from the
computations for W(l-1,J), W(l,J), W(l+1,J), and W(l,J-1). This dependency dictated the
approach taken in the development of the parallel implementations of the sequential
implementation shown in Table 1.

The initial approach taken in the parallel implementation to determine the
numerical solution required a large amount of synchronization. Each processor was
allowed to perform all computations for an individual row. Due to the above computational
dependencies required, another approach was implemented that allowed the
computations for row J to be performed by NPROC-1 processors. This approach
eliminated the dependencies among the processors and is shown in Tables 2 and 3 for
the preschedule and selfschedule versions. The processors are synchronized after the
completion of the parallel loops. This approach required that NPROC-1 processors,
NPROC is the number of processors, compute a section points for each row. The number
of points computed by each processor is based on the computed value stored in the
variable CELSIZ.



il {1

{

(

There is a three-dimensional array, HOLDER, that is used to store information
pertaining to each element in the array W, the array containing the numerical solution for
the one-dimensional wave equation. The information stored in HOLDER are the x-
coordinate, the y-coordinate, the integer value of W(l,J), and the pixel number of W(i,J).
The pixel number of W(l,J) is the location in the pixel viewport[Tektronix] representing the
xy-coordinate(see Tables 1, 2, 3).

The preschedule version of statement 25 shows a modified version of a
preschedule loop, DO 30 - End presched DO, that uses NPROC-1 processor (Table 2).
The variable ME is a private variable that is used to store the processor's id. The critical
section, Critical XX, is used to implement a counting semaphore, COUNT(J). This
counting semaphore is used to signal the output processor that rows 2,3,...,M-1 have
been computed(Figure 2). This set of counting semaphores correspond to the setting of
the completion flags at location B in Figure 2. Statement 31 and the statement that
immediately follows in Tables 2 and 3 form the implementation of a busy wait(spin lock).
This busy wait is used to prevent processors from performing unnecessary computations
before the row variable, J, is incremented.

The self-schedule version of statement 25, in Table 3, shows a modified version of
a self-schedule loop that uses NPROC-1 processors. The critical sections, Critical XYZ30,
are used to increment the loop control variable, |, that represents the number of points
calculated for each row J.

When the variable RENDEZ is set to 1 (see Table 2 and 3), a rendezvous has
occurred between the NPROC processors. The variable RENDEZ in the critical section,
Critical XXX, is used to signal the completion of all computations pertaining to the interior
points for rows 2,3,...,M-1. At this instance, all NPROC processors may be computing
pixel information(see Figure 2, location B for NPROC-1 processor(s) and 1 processor).
This is the only point in the execution of the implemented parallel algorithms that the
NPROC processors may be executing the same segment of code.

The computation of pixel information uses the information stored in the three-
dimensional array, HOLDER. These computations include the computation of the color of
each pixel, and the execution of the graphic routines that are used to depict the numerical
solution. The number of colors supported by the graphic terminal used in this research is
16.

As the output processor is computing pixel information and depicting the results, it
stores the index of the each row in the variable VOUS as it completes the corresponding
row computations. Once the rendezvous has occurred, the output processor finishes it's
present computations for some row J and ceases to compute pixel information (see Figure
2, locations C). There is a set of semaphores, CODARY (J), that correspond to the
completion of the computations pertaining to pixel information for row J, J = VOUS+1,
VOUS+2,...,M-1(see Appendices B and C, statement 88). At this point, the pixel
computations for each row are performed by an individual processors since all of the row
dependencies have been eliminated.



The sequential version’s depiction of the numerical solution follows a flow of control
that is similar to initial pixel computations and depictions performed by the output
processor, Figure 1. After the computation of pixel information for row J, the solution is
depicted. This process is continue for rows J=0,1,...,M-1.

Results

The results displayed in this paper are obtained from the execution of the
implemented sequential and parellel algorithms on the Sequent Balance 21000. In order
to record the execution time on a multiuser multiprocessor, the best execution time is
recorded out of a series of executions. In the case of a dedicated multiprocessor such as
the Flexible Flex/32 multiprocessor, an average is taken of a series of execution times for
a different number of processors, respectively. The results shown in Figures 4-23
represent the execution of 50 iterations of the 100 X 100 and 400 X 400 systems of
equations. These figures are based on the execution times for 1, 2, 4, 8, and 16
processors. Using Equations 4 and 5, the speedups and efficiencies are computed. The
work distributions for 2, 4, 8, and 16 processors are discussed.

The execution times are recorded for the sequential implementation and the two
parallel implementations centered around the preschedule and self-schedule loops. The
execution times in figures 4, 7, 10, and 13 for 1 processor corresponds to the execution
times for the sequential implementation.

The charts in figures 4-9 represent the results associated with the execution times
required to solve the 100 X 100 system of equations. The charts in figures 10-23 represent
the results associated with execution times required to solve the 400 X 400 system of
equations. The charts that represent the speedup in figures 5, 8, 11, and 14 show the
speedup achieved for their respective systems of equations. The unfilled portion of those
figures represent the desired linear speedup which is the same as the number of
processors used to solve the system of equations.

The best efficiencies were achieved in the use of 8 processors to solve the 100 X
100 and the 400 X 400 systems of equations. In all cases, the efficiency of solving the
system with 16 processors was approximately the same or less as efficient as using 4
processors. The efficiency achieved in solving the 400 X 400 system of equations show
that using of 4 processors is almost as efficient as using 8 processors. The efficiency of
using 2 processors to solve the 100 X 100 and the 400 X 400 systems of equations is less
than 50% efficient. This shows that the implemented parallel algorithm is not well suited
to the execution by 2 processors.

The charts in figures 16-23 show that the work distributions for 2, 4, 8, and 16
processors in solving the 400 X 400 system of equations. The 2 and 4 processor work
distributions show the most even distributions of work. It should be noted that in terms of
the 8 and 16 processor work distributions, the self-schedule implementation has basically
the same distributions as the preschedule implementation. The biggest difference is that



¢

]

the selfschedule loop iterations are assigned based on request, whereas the preschedule
loop iterations are always determined before the loop is executed.

The images shown in figures 24-29 show the damping effect on the vibrating
string for the 40th and 50th iterations. The damping force is initially applied to a 200 X
200 system of equations which is treated as the median between the 100 X 100 and 400
X 400 systems of equations. Figures 24 and 27 show the damping force applied to 100 X
100 system of equations. Figures 25 and 28 show the damping force applied to the 200
X 200 system of equations. And, figures 26 and 29 show the damping force applied to
the 400 X 400 system of equations.

Conclusion

The overall execution time required to solve the 100 X 100 system of equations
using 2, 4, 8, and 16 processors was more efficient using the preschedule loops as
compared to the self-schedule loops. This is not the case for the execution time required
to solve the 400 X 400 system of equations. The synchronization overhead that is
associated with the selfschedule loops is higher than overhead associated with the
preschedule loops when the workload for the processors is small. However, as the
workload for the processors increases, the selfscheduled implementation becomes more
efficient. This increase in efficiency is due to the load balancing associated with the use
of selfschedule loops.

The load balancing associated with the use of selfscheduled loops can be
beneficial in the execution of parallel programs. Some of the problems associated with
the use of multiprocessors, such as bus and memory contention, synchronization
overhead, etc., can be offset through the use of the load balancing associated with
selfschedule loops. In the case of preschedule loops, if any of the processors that have
been assigned a large share of the work are delayed for any reason during program
execution, these delays are reflected in the overall execution time. The selfschedule
loops are an attempt to alleviate the effects of any of the above execution delays.

A major benefit of using a portable language such as the Force is that as one
multiprocessor is no longer is available, another multiprocessor that is compatible to the
environment required by the Force programming language can be used. However, this
benefit can also be detrimental to the efficient execution of the implemented parallel
algorithms if the type of multiprocessor architecture is not taken into consideration.
When a new multiprocessor is needed to continue the development of parallel
algorithms, it may be necessary to fine tune the system in order to achieve the most
efficient execution of the implemented algorithms. Some multiprocessors may have
processors dedicated to the execution of parallel programs such as the Flex
multiprocessor. Other multiprocessors may be multi-user multiprocessors, such as the
Sequent multiprocessor. Each type of multiprocessor has its advantages and
disadvantages, but it is up to algorithm designer to make use of the fine tuning routines
provided by the operating system in order to achieve maximum throughput for parallel
implementations.



{

Il

[

i1

The major obstacle in designing an efficient parallel algorithm for any application
is determining the best approach for work distribution coupled with minimal
synchronization among processors. Normally, work is divided in conjunction with the
execution of loops. When solving a system of equations and depicting the numerical
solution, it may be necessary to devise several threads of concurrent execution within
one program.

In order to develop the best possible parallel graphic application algorithm for any
application, the approach should be to initially develop a sequential implementation that
solves and depicts the numerical solution of the application. Followed by performing
timing studies on different segments of the sequential implementation. The segments of
the implemented algorithm that are the most time consuming are possible candidates for
potential incorporation of parallel constructs.

Based on the nature of the application being solved, the way that the sequential
implementation is partitioned can lead to the development of different threads of
execution in the parallel implementation. An example is another approach to the
depiction of the vibrating string. It is now apparent that the most time consuming portions
of the implemented algorithms are associated with the computations related to the
execution of the graphic routines. With this knowledge, the main emphasis is now placed
incorporating parallelism in the execution of these routines. It should be noted that each
processor that executes the graphic routines performs the computations an individual
pixel viewport, which is equivalent to one iteration of the vibrating string.

Since the need for sychronization has been eliminated in the execution of the
graphics routines, the majority of the processors should be assigned this task from the
start of the parallel implementation. The synchronization associated with the execution of
the boundary conditions can be removed and the task of computing these boundary
conditions can be assigned to the output processor. This is one thread of execution.
Another thread of execution can be associated with the computations for the interior
points. This task can also be assigned to one processor which will eliminate some
sychronization overhead. Once this processor has completed the task of computing the
interior points, it can join the other processors that are performing the computations
associated with the graphic routines. There will still be some sychronization overhead
associated with this approach. However, the emphasis is placed on achieving higher
throughput.

In order to achieve the individual threads of execution, some of the parallel
constructs support by the parallel programming language may need to be modified. Asin
the case of the Force language, the language has parallel constructs that are designed
for the parallel execution of loops and procedures. In order to achieve the different
threads of execution, the programmer must make use of the processor id in order to
achieve the desired results.

There are several factors that affect the performance of the implemented
algorithms. One factor that had a major impact on the performance of the implemented



e

il

i

M

I

I

[

I

i@

UL

f (on o Wb e

L

algorithms was the priorities given to each process. The execution priorities were always
very low. These low execution priorities allowed the processes assigned to each
processor to be swapped out when a process with a higher priority is encountered. This
swapping process can impact the total execution of the parallel implementations if some
form of synchronization is required during this swapping process. In the worst case,
NPROC-1 processors are awaiting a response from a processor that has been put to
sleep due to the swapping process. A higher priority number should have aimpact on the
required execution time. :

Another factor affecting the performance is the use of the counting semaphores
that are used to synchronize the NPROC-1 computation processors and the output
processor. The time required for synchronization can be reduced to allow a faster
depiction of the solution of one-dimensional wave equation with less synchronization
overhead. However, it should be noted that if the synchronization at the end of the self-
schedule loop is relaxed too much, some processors will perform no work.

In terms of the overall execution times recorded to obtain and depict the numerical
solution of the one-dimensional wave equation, a very small portion of time is actually
spend solving the system of equations. The majority of the execution time is spend
performing the viewport computations. As the images become more complex than a
vibrating string, more synchronization may be required which will have some effect on the
performance of the implemented parallel algorithms used to depict the numerical solution
of different types of equations.

There are system routines provided by the operating system of the Sequent
multicomputer that facilitates the fine tuning of the operating system of for the execution
of parallel programs. By fine tuning the system and eliminating some synchronization
overhead, the efficiencies achieved for 2, 4, 8, and 16 processors should be improved.



U

REFERENCES

Ageloff, R. and Mojena, R. Applied FORTRAN 77 . Belmont, California: Wadsworth
Publishing Company,1981.

Bhuyan, L. N., Yang, Q., and Agrawal, D. P. "Performance of Multiprocessor
Interconnection Networks." Computer (February 1989):25-37.

Burden, R. L., Faires, J. D., and Reynolds, A. C. “Hyperbolic Partial-Differential
Equations.” Numerical Analysis. Boston: PWS Publishers (1981): 533-541.

Dining, A. A. "Survey of Synchronization Methods for Parallel Computers." Computer.
(July 1989): 66-77.

Dubois, M., Scheurich, C., and Briggs, F. A. "Synchronization, Coherence, and Event
Ordering in Multiprocessors." Computer. (February 1988):9-21.

Jordan, H. F, Benten, M. S., and Arenstorg, N. S. Force User’s Manual. University of
Colorado:October 1986.

Sequent Computer Systems, Inc. Guide to Parallel Programming: Sequent Technical
Publication. Englewood, New Jersey: Prentice Hall,1989.

Slater, J. C. and Frank, N. H. “The Vibrating String.” Mechanics. New York: McGraw-
Hill (1947):143-162.

Stenstrom, P. "Reducing Contention in Shared-Memory Multiprocessors.” Computer.
(November 1988): 26-37.

Tektronix, Inc. 4106/4107/4109/CX Computer Display Terminals: Tektronix Technical
Publication. Beaverton, Oregon:1984.

Thomas, G. B., Jr. “Vibrations.” Calculus and Analytic Geometry. Reading: Addison-
Wesley (1966): 895-901.

Oleinick, P. N. Parallel Algorithms on a Multiprocessor . Ann Arbor:UMI Research Press,
1982.

Quinn, M. J. Designing Efficient Algorithms for Parallel Computers. New York: McGraw-
Hill,1987.




1]

ﬂ\l

i

{

v

|1

(1

Table 1. Sequential version of loop 25

Cc
C This loop is used to solve the one-dimensional
C wave equation. This loop calculates the values
C for rows 2 to M-1 (each processor has a private
C variable, MM)
C
25 CONTINUE
J= JJJ
T= J * K
DO 26 II= 1,MM-1
X= II * H

W(II,J+1)= 2.*(1.-LAMB2)*W(II,J)
+ + LAMB2* (W(II+1,J)+W(II-1,J))

+ W(II,J-1) + FORCE (external)
+ / e**(gamma*T)
HOLDER({J+1,0,II)= x-coordinate computation
(based on X)
HOLDER (J+1,2,II)= int (W(II,J+1))
HOLDER(J+1,1,II)= y-coordinate computation
(based on HOLDER(J+1,2,II})
HOLDER(J+1,3,II)= pixel number computation
(based on HOLDER(J+1,1,II) and
+ HOLDER(J+1,0,1II))
26 CONTINUE

JJyjg= JJJ + 1

IF (JJJ.NE.NN) GO TO 25



AR

il

i

il

Ll Ui 0O VIR 1 {

Table 2. Preschedule version of loop 25

OO0

CELSIZ2= INT((MM-1)/(NPROC-1))+1

Critical XYZ
COUNT (0)= COUNT(0) + 1
End critical

831 CONTINUE
IF (COUNT (0) .NE. (NPROC-1)} GO TO 831

This loop is used to solve the one-dimensional
wave equation., This loop calculates the values
for rows 2 to M-1 (each processor has a private
variable, MM)

25 CONTINUE

J= JJJ

T= J * K

DO 30 I = (1) + ((CELSIZ))*{(ME - 1), (MM-1),
+ ((CELSIZ))*(NPROC - 1)

IST= (ME-1)*CELSIZ+1
IEND= MIN(ME*CELSIZ,MM-1)
DO 26 II= IST,IEND
X= II * H
W(II,J+1)= 2.*(1.-LAMB2)*W(II,J)
+

+ LAMB2* (W(II+1,J)+W(II-1,J))
+ W(II,J-1) + FORCE(external)
+ / e**(gamma*T)
HOLDER (J+1,0,II)= x-coordinate computation
(based on X)
HOLDER(J+1,2,II)= int(W(II,J+1}))
HOLDER (J+1,1,II)= y-coordinate computation
(based on HOLDER(J+1,2,1II))
HOLDER(J+1,3,II)= pixel number computation
(based on HOLDER{(J+1,1,II) and
+ HOLDER(J+1,0,1II))
26 CONTINUE

30 End presched DO

Critical XX
IF ((COUNT(J)+1l) .EQ. (NPROC-1)) THEN
JJJd= JJJ + 1
END IF
COUNT (J)= COUNT(J) + 1
End critical

31 CONTINUE
IF (COUNT (J) .NE. (NPROC-1)) GO TO 31

IF (JJJ.NE.NN) GO TO 25
COUNT (J+1)= COUNT (J)

RENDEZ= 1



i

I .

A

I

Table 3. Selfschedule version of loop 25

aaoaaann

CELSIZ= INT({(MM-1)/ (NPROC-1})+1

Critical XY2
COUNT (0)= COUNT(0) + 1
End critical

This loop is used to solve the one-dimensional
wave equation. This loop calculates the values
for rows 2 to M-1 (each processor has a private
variable, MM)

25 CONTINUE
J= JJJ
T=J * K
Critical XYzZ30
SELF30= SELF30+CELSIZ
I= SELF30
End critical

30 CONTINUE
IST= (ME-1)*CELSIZ+1
IEND= MIN(ME*CELSIZ,MM-1)
DO 26 II= IST, IEND
X=II1 * H
W(II, J+1)= 2.*(1.-LAMB2)*W(II,J)

+ + LAMB2* (W(II+1l,J)+W(II-1,J))
+ - W(II,J-1) + FORCE (external)
+ / e**{gamma*T)
HOLDER (J+1,0,II)= x-coordinate computation
(based on X)
HOLDER(J+1,2,II)= int (W(II,J+1))
HOLDER (J+1,1,II)= y-coordinate computation
{based on HOLDER(J+1,2,II))
HOLDER(J+1, 3,1II)= pixel number computation
(based on HOLDER(J+1,1,II) and
+ HOLDER(J+1,0,II))
26 CONTINUE

Critical XYZ30
SELF30= SELF30+CELSIZ
I= SELF30

End critical

IF (I.LE.(MM-1)) GO TO 30
Critical XX
JF ((COUNT (J)+1) .EQ. (NPROC-1)) THEN
JJJ= JJJ + 1

CELSIZ= INT((MM-1)/(NPROC-1))+1
SELF30= -CELSIZ+1

IF (JJJ.EQ.NN) THEN

RENDEZ= 1
SELF90= VOUS
END IF
END IF

COUNT (J)Y= COUNT(J} + 1
End critical

31 CONTINUE
IF (COUNT(J).NE. (NPROC-1)) GO TO 31



il

(| i

i

|

1

I

1
|

IF (JJJ.NE.NN) GO TO 25

COUNT (J+1)= COUNT (J)



{]

i [ fill

e el

fll

start

initialize
variables

Y

compute
endpoints

Y

compute interior points for
row 0 and row 1

l

compute interior points
for rows 2,...,.M-1

¥

compute pixel information
for row I

l

depict string
vibration for
row I

1=0,...,M-1

v

Figure 1. Flow chart for sequential one-dimensional wave equation.



|

i

i 1

4

i

il

|

U

1
il

i

v

I initialize variables ]

NPROC-1 Processor(s)

A 4

compute endpoints

Y

compute interior points
row 0 and row 1

v

set completion flag, A

!

1 Processor

h 4

compute pixel
information

depict string
vibration

compute interior points
for 2,....M-1 rows

set completion flags, B

compute pixel
information

set completion flags, C

Y

depict string
vibration

Y

Figure 2. Flow chart for parellel one-dimensional wave equation.




‘wofqoid doys-npnur jutod 4 ¢ 2unB1

ﬂlza...aou.—.
[ MOY UO SIUI0{ [

A

o000 o000
... 000 __ ee@e
o000 L YOI0I0)
o000 o o©®@|0

° oouoo

e o o ® * o o o000
® o000

ovo oo.oo

N

. _I

SUOIIRIN] [

[‘W‘"



Aoueioyy3 einpeyssesd g einbiy
$408S9004d }O JBQUWNN

9l

B8 14 Z I
-0°0
=AY
%0
50¥°0
-9°0
z59°0 9’0
scLo
=80
~ 0L
000'4

BWi| UolhdeX3 B|Npeydsseld ¥ einbid

SI0SS8D0J4d 0 JOQUINN

1433

Asueiol

dn-—-peeds e|npeyosesd "G eanbiy
SJ0SSA00Jd }O JBqWINN

¥ 4 I gl ] 14
—-0 -0
81970 | 000° 1 . s10)
-
4
SEiY
- 000S
l@ S
v
o
-8 a - 0054
| .
s
-0l
8E¥Y 0} - 00001
~Z1 <8501
- 00621
na 0S8z}
-9l - 000G L

R | A L i i | ) } Lo ! | ! ) [

(spucoas) ewiy



0ZL'6

9l

809°0

dn—peeds sejnpeyosyles 'g e.nbiy
5J0SS220.4 JO JaquinN

14

4

AouBlaly}3 BINpeYDSsy|eS g eJanbiyg
5408S800Jd4 }O JOQWNN

[AYA]

000°1

8 14
— -

-0
-z
- v
bl
H
5
o1
-zl
=4
Loy

1

¥

4 L
-00D
20
- ¥°0
avo
-9°0
-80
—0°l
000"+

g1

I

Aouejoiyy3

oWy uolnoexy ejnpeyssjjes °/ eJnbij
$J0S892504d JO JaqQUINN

g ¥
Y
oIl - 0062
33 l-0006

3
[
o)

-o0osz ¥
o]
(o}
3
a

- 00001 L

- 00621

[ 4 24]
- 000G L

11 D el



Asuelo1343 ejnpeyossesd -Z| eanbiy
54085800Jd 0 Jequny

9l B8 14
- 00
-20
189¢°0 %0 m
=
9,
. ®
[ 1] 4] pow 1250 w
-90 <
-8'0
01

ew|| uopynoex3 ejnpeysseldd Q) ©4nbiy
S10558204d 4O JaquINN

dn~peeds ejnpeyoselgd "|| e4nbiy
S108S820Jd }O JBQUINN

14 4 L 9L 8 14
-0 -0
1ZL0 0001 . p—
L01'T 009¢1 I~ 00002
- ¥
~ 0000V
Rl
a
g M. - 00009
186°L |
s
0L
- 00008
1
- 000001
vl
048901
-9 - 000021

(spuodeg) swi]



Aouelo)}y3 e|npeyssjles ‘gL eJnbiy
5108580014 0 JequnN

9l 8 ¥
19£°0
rero
8550

9¢¢'0

- 00

20

- +0

Aoueidi})3

}-90

~8'0

-0

eLll] uoynoeXx3 e|npeyossjles "¢l eunb)y
S10SS8004d 4O J9QUUNN

dn-pesds enpeyosjjes "¢ einbiy
S10S580044 }O JBqUINN

14 [4 L 9l 8 14
~0 -0
tZL°0 000°L v
-
osELL - 00002
~ v
oR(SE - 0000
|® s
©
H
806°L -8 n_u. - 00009
C
Lot ©
- 00008
-2l
I~ 000001
vl
0L8901
~91 =~ 000021

(spuooesg) ewj)



uo|NquI§sIg MJOM J0SSed0u4d—9g| e|npeysseld ‘gl einbBiy uoyngLsig dJop Lossesold-g e|npeysseldd gl eanbyy
JequunN Josseoodd JeguwinN Josseododd

9L SL ¥1 €1 ZL L Ol 6 8 L 9 S ¥ € 4 L

g L 9 S 14 ¢ 4 9
-0 -0
- 0001 ! [~ 0002
- 000Z L 000
- 000€
- 0009
- 000%
- 0008
- 000S
oLz -~ 00001
oise
. ores TS 0009
or
osr9 - 00021
ocse 0549 - 000L W
oere 7% 0008 ” ooery | 0SS - 000¥ 1
[+ 1441
[+ 17 4%
ossst
00921

(spuodeg) ewy]

oles ] - 00091
oios 7*° 0006 orisl

0998 0996 - 00001 009L1 ~ 00081

uonnqgusiq YI0M JOSSeD0.id—¢ B|Npeyosseld /| DLzm_u uoynqlJisig »JOM JOSSBlO.d-—Z @|npayodsaid 9| OL_J@_L

JaqWNN J10SS890.g Jegquny JOSS9204d
b £ z |
-0 -0
- 0oos
- 0000Z
- 00001
o - 0000%
o005t 3
[
Lot
-o0000z ¥ - 00009
S
3
-000SZ @
2 - 00008
- 0000E
- 000001
oLres - 000GT
oLYst oz8908 048901
0099%
- 0000¥ - 0000Z 1

} i I I I VI A

(spuodeg) swij]

(spuoseg) ewiyy



uolNqUsig 3}Jopm JOSSBdOId—g| B|npeyds}es "¢z esnbly

JeqLUnNN J10SSedoudd

9L Gt #¥L €1 2L 1L 0Ol 6 8 L 9 S ¥ ¢ Z

orzs
oLvS

0109

osry
osie

0L$L

.74 ] oris

uolNqIIysiq X40M J0SSed0dd—f 8|npeyosyes -z eunbiy
JequuinN Jossadoudd

14 1Y 4

ot

osLst [+-724 3

- 0001

- 0002

- 000¢

- 000+

- 000G

- 0009

- 0004

- 0008

- 0006

- 00001

-0

- 000%

- 00001}

- 00061

- 00002

- 00062

- 00008

- 000SE

—~ C000%

(spuoosg) swyy

(spuodes) swy)

uolnNqusiq MJOM J0SSesold—g ejnpeyssyles -zz eanbiy
ieqWINN JOSSB20.ud

|

[ 374

uolNqILSIg MJOM J40SS8001d—7 8|npayssyjes ‘gz o4nbiy
JagquinN Jossed0.d

1A

048901

L 9
oszrt _

[/ 4413

__

ofsLl

1124

Y 4 L
_ o1zgl _
onLsl

048301

0

- 0002

- 000%

- 0009

- 0008

- 00001

- 000Z1

- 000¥ L

- 00091

ﬁ 00081

- 00002
- 0000%
|- 00009
- 00008

- 000001

= 0000Z!

(spuoseg) swi|

(spuoses) s



suolbnby jo wasAg
00¥ X 00% uo jo8y3 Buidwoqg -9z @4nbiy

suoibnby jo0 Wa|sAg suoiypnbl jo waysAg
00Z X 00z uo joey}3 Buidwoqg gz e.4nbiy 001 X 00} uo jo8433 Buidwpg "yz 24nbig

— R



suolyonb3j }Jo wWoasAg
00¥ X 00¥ uo o833 Buidwopg "6z 24nbiy

suolybnb3 jo waysAg suolybnb3j jo waysiAg
00Z X 00¢ uo o843 Buidwog gz =4nbid 001 X 001 uo 2933 Burdwog £z 8inbiy

) b ) I ) o da il _ | _ ] 100 I | I



APPENDIX A



aaon

a0 a

a0 aaan Qo

QOO

This is the selfschedule version

Force WAVE of NPROC ident ME

String vibration program

Declaratio

Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared

ns

CHARACTER*15 LINE(0:51,0:800)

INTEGER

INCNVAL, JJJ, M, N, RENDEZ

INTEGER TTBEG, TTEND, COUNT (0:800)

INTEGER
INTEGER
INTEGER
INTEGER
LOGICAL
LOGICAL
REAL L,T
DOUBLE P

HOLDER(0:400,0:4,0:401)
LENGTH(0:51,0:800),VOUS, TIME (1:16)
CODARY (0:800) ,SELF6,SELF20
SELF30,SELF90,IT1,IT2,TIME1(1:16)
XX, XYZ,XY26,XYZ20

XYZ230,XYZ90

I,ALPHA

RECISION LAMBDA,W(0:400,0:401)

Private CHARACTER*15 STRLINE
Common STRLINE, STRLEN

Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
End declar

Barrier

DOUBLE

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL H,

PRECISION LAMB2
1,J,1I,CELSIZ,SCREEN

BITS, CODCOUN, XEND, YEND

IST, IEND, MAXIM, MINIM, STRLEN
MAXIXC,MULTR, INDXPTR, INDXCOU
COUN, MM, NN

STOHOLD, ITHOLD

CKHOLD, CK

CKSLOPE, CKSLOP1,FLAG, FLAG22,FLAG33
LBEG, LEND, COLOR

X,K,T,SLOPE

REAL TEMP

ations

Begin program timer

TTBEG=

timer ()

CALL PXBEGIN(1,11,4)
CALL PXVIEW(0,0,639,479)

Input of the length of the string.

WRITE (6
READ *,
WRITE (6

(*) "Ent
L
*) L

er the length of the string: ’

Input of the time limitation.

WRITE (6
READ *,
WRITE (6

,*} "Ent
TI
*) TI

er the time limit: *

Input of the number of subdivisions for the string.

WRITE (6
READ *,
WRITE (6

+*) "Ent
M
*) M

er the number of subdivisions for the string:

Input of the number of subdivisions for the time.



QOO

QOoaoaaan

aaa

OO0

aaoan

WRITE (6, *) ’'Enter the number of time subdivisions: '
READ *,N
WRITE(6,*) N

Input of the value for alpha.

WRITE(6,*) ’'Enter the value for alpha: '
READ *, ALPHA
WRITE (6, *) ALPHA

The following is used to insure convergence and stability

of the numerical solution of the one-dimensional wave equation.
The value of N, the number of time subdivisions, is incremented
by 50 in a effort to insure convergence and stability.

LAMBDA = 0.
INCNVAL= N
SELF6= -1
SELF20= 0

CELSIZ= INT((M-1)/(NPROC-1))+1
SELF30= -CELSIZ+1

N= INCNVAL
H= L/M
K= TI/N

LAMBDA= K*ALPHA/H
INCNVAL= N + 50
IF (LAMBDA .GT. 1.) GO TO 5

WRITE (6, *)
WRITE (6, *) 'The value of N is ’,N
WRITE (6, *)
JJJg= 1
End barrier
Beginning of individual processor time.

ITl= timer ()

MM= M

NN= N

The following private variables are initialized for use
in the graphic routine RUNLENGTH WRITE.

XEND= 639
YEND= 479
BITS= 4

MULTR= 2**BITS
MAXIXC= INT (65535/MULTR)
SCREEN= (XEND+1) * (YEND+1)

This is the point where the NPROC-1 computation
processors are separated from the output processor.

IF (ME.NE.NPROC) THEN
H= L/MM
K= TI/NN
LAMB2= (K*ALPHA/H)**2



i

aa

aaQaaoan

QOO0

QOO an

aOaoaaq

Limiting the output to 50 iteraions.

NN = 50

This loop computes all of the boundary points for the
vibrating string.

Modified implementation of a selfschedule DO-CONTINUE loop

Critical XYz6
SELF6= SELF6+1
J= SELF6

End critical

6 CONTINUE

X= 0

W(0,J)= SIN(3.1415927%0.)

HOLDER (J,0,0)= int (X*100+10)

HOLDER (J,2,0)= int (W(0,J))

HOLDER (J, 1,0)= HOLDER(J, 2,0)+240

HOLDER(J,3,0)= (YEND-HOLDER(J,1,0))* (XEND+1)
+ +HOLDER(J,0,0) +1

X= MM*H
W(MM,J)= SIN(3.1415927+*L)
HOLDER(J,0,MM)= int (X*100+10)
HOLDER (J,2,MM)= int (W (MM, J))
HOLDER (J,1,MM)= HOLDER(J,2,MM)+240
HOLDER (J, 3,MM) = (YEND-HOLDER(J,1,MM))* (XEND+1)
+ +HOLDER (J, 0, MM) +1

The following two values are used in the pixel
color computations.

HOLDER (J,0,MM+1)= int ( (MM+1)*H*100+10)
HOLDER (J,1,MM+1)= HOLDER(J,1,MM)

The initialization of the array associated with
the counting semaphores for the completion of
computations for the interior points for rows
0,1,...,M-1.

COUNT (J)= 0
Critical XYz6

SELF6= SELF6+1

J= SELF6
End critical
IF (J.LE.NN) GO TO 6

This loop computes the initial conditions, the
interior points for row 0 and row 1.

Modified implementation of a selfschedule DO-CONTINUE loop

Critical XY220
SELF20= SELF20+1
II= SELF20

End critical

20 CONTINUE
= II*H



aQaQ

QaQa

QOO0

Row j=0 computations

W(II,0)= SIN(3.1415927*II*H)

HOLDER(0,0,II)= int (x*100+10)

HOLDER(0,2,II)= int(W(II,0})

HOLDER(0,1,II)= HOLDER(0,2,II)+240

HOLDER(0,3,II)= (YEND-HOLDER(O,1,II))* (XEND+1)
+HOLDER(0,0,II)+1

Row j=0 computations

++ + +

25

30

+

W(II,1l)= (1.-LAMB2)*W(II,0)
LAMBR2/2.

* (SIN(3.1415927*(II+1)*H)
+ SIN(3.1415927*(I1I-1)*H))
+ K*0

+

HOLDER(1,0,II)= int (x*100+10)

HOLDER(1,2,II)= int (W(II,1))

HOLDER(1,1,II)= HOLDER(1l,2,IT)+240

HOLDER(1,3,II)= (YEND-HOLDER(1l,1,II})*(XEND+1)
+HOLDER(1,0,II)+1

Critical XYz20
SELF20= SELF20+1
II= SELF20

End critical

IF (II.1LE.(MM-1)) GO TO 20
CELSIZ= INT((MM-1)/(NPROC-1})+1
Critical XYZ

COUNT(0)= COUNT(0) + 1
End critical

CONTINUE
J= JJJ
T= J * K

Modified implementation of a selfschedule DO-CONTINUE loop

Critical XY230
SELF30= SELF30+CELSIZ
I= SELF30

End critical

CONTINUE
IST= (ME-1)*CELSIZ+1
IEND= MIN(ME*CELSIZ,6 MM-1)
DO 26 II= IST,IEND
X= II * H
W(II,J+1)= 2,*(1.-LAMB2)*W(II,J)
+ LAMB2* (W(II+1,J)+W(II-1,J))
- W(II,J-1) + COS(2.*3.1415927*T)
/ 2.71828182845**(110*T)

HOLDER(J+1,0,II)= int (X*100+10)
HOLDER(J+1,2,II)= int (W(II,J+1))



aan

aOaan

C
C
C

[eXo NP Ne]

HOLDER(J+1,1,II)= HOLDER(J+1,2,II)+240
HOLDER (J+1,3,II)= (YEND-HOLDER(J+1,1,II))* (XEND+1)

+ +HOLDER(J+1,0,IT)+1

31

90

3303

CONTINUE
Critical XYz30
SELF30= SELF30+CELSIZ
I= SELF30
End critical
IF (I.LE.(MM-1)) GO TO 30
Critical XX
IF ((COUNT(J)+1l) .EQ. (NPROC-1)) then
JJJ= JJJ + 1

CELSIZ= INT((MM-1)/(NPROC-1}))+1
SELF30= -CELSIZ+1

IF (JJJ.EQ.NN) THEN

The occurrence of the processor rendevous.

RENDEZ= 1
SELF90= VOUS
END IF
END IF

COUNT (J)= COUNT(J) + 1
End critical

CONTINUE
IF (COUNT(J) .NE. (NPROC-1)) GO TO 31

IF (JJJ.NE.NN) GO TO 25

COUNT (J+1)= COUNT (J)

DO 90 J = (VOUS+1) + ME - 1, (NN), NPROC -1

Critical XYZ9Q
SELF90= SELF90+1
J= SELF90

End critical

IT2= timexr ()
TIME (ME)= IT2-IT1

Modified implementation of a selfschedule DO-CONTINUE loop

CONTINUE

MAXIM= -65535

MINIM= 65535

CONTINUE

IF (COUNT(J) .NE. (NPROC-1)) GO TO 3303

Computations for pixel colors based on slope
computations.

FLAG= 0



FLAG22= 0

FLAG33= 0

DO 335 1= 0,MM
IF (HOLDER(J,3,I).GT.MAXIM) MAXIM= HOLDER(J, 3,I)
IF (HOLDER(J,3,I).LT.MINIM) MINIM= HOLDER(J,3,I)

SLOPE= (HOLDER(J,1,I+1)-HOLDER(J,1,1I))
IF (0.0 .NE. (HOLDER(J,0,I+1)-HOLDER(J,0,I))} THEN
SLOPE= SLOPE/ (HOLDER(J,0, I+1)-HOLDER(J,0,I))
ELSE
SLOPE = 0.0
END IF
TEMP= ABS (SLOPE)

IF ((0.0.LE.TEMP) .AND. (TEMP.LT.0.167)) THEN

COLOR= 12

ELSE IF ((0.167.LE.TEMP) .AND. (TEMP.LT.0,333)) THEN
COLOR= 4

ELSE IF ((0.333.LE.TEMP).AND.(TEMP.LT.0.5)) THEN
COLOR= 11

ELSE IF ((0.5.LE.TEMP).AND.(TEMP.LT.0.667)) THEN
COLOR= 10

ELSE IF ((0.667.LE.TEMP).AND. (TEMP.LT.0.833)) THEN
COLOR= 3

ELSE IF ((0.833.LE.TEMP).AND.(TEMP.LT.1.0))} THEN
COLOR= 9

ELSE IF ((1.0.LE.TEMP).AND.(TEMP.LT.1.167)) THEN
COLOR= 7

ELSE IF ((1.167.LE.TEMP) .AND.(TEMP.LT.1.333)) THEN
COLCR= 8

ELSE IF ((1.333.LE.TEMP).AND.(TEMP.LT.1.5)) THEN
COLOR= 2

ELSE IF ((1.5.LE.TEMP).AND.(TEMP.LT.1.667)) THEN
COLOR= 15

ELSE IF ((1.667.LE.TEMP).AND. (TEMP.LT.1.833)) THEN
COLCR= 6

ELSE
COLOR= 1

END IF

IF (SLOPE.GT.0.0) THEN
CKSLOPE= 1

ELSE IF (SLOPE.EQ.0.0) THEN
CKSLOPE= 0

ELSE
CKSLOPE= -1

END IF

IF ((FLAG.EQ.O) .AND. (SLOPE.NE.0.0})) THEN
CKSLOP1= CKSLOPE
FLAG= 1

END IF

IF ((CKSLOPE.EQ.CKSLOP1l) .OR. (CKSLOPE.EQ.C}) THEN
HOLDER(J,4,I+1})= COLOR
IF (FLAG33.EQ.0) THEN

FLAG22= 0
FLAG33= 1
HOLDER (J,4,I)= 12
END IF
ELSE
IF (FLAGZ22.EQ.0) THEN
FLAG22= 1
FLAG33 = 0
GO TO 335

END IF



I

OO a

335

14

1100

199

HOLDER(J, 4,I)= COLOR
END IF
CONTINUE

This section of the program is the inline encoding of
the graphics routine, RUNLENGTH WRITE. This subroutine
loads color indices into the pixel viewport.

CODCOUN= 0
CKHOLD= 0

CK= 0

MINIMUM= MINIM-1
STOHOLD= MAXTXC

CONTINUE
IF (STOHOLD.LT.MINIMUM) THEN
STRLINE (1:)= CHAR(27)

STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR*MAXIXC+0)

CODCOUN= CODCOUN+1

LENGTH (J, CODCOUN) = STRLEN

LINE (J, CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE (1:STRLEN)
STOHOLD= STOHOLD+MAXIXC

GO TO 14

ELSE
STRLINE (1:)= CHAR(27)
STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

MINIMUM= MINIMUM- (STOHOLD-MAXIXC)

CALL DECCON(1)
CALL DECCON (MULTR*MINIMUM+Q)

CODCOUN= CODCOUN+1
LENGTH(J, CODCOUN) = STRLEN
LINE (J,CODCOUN) (1:LENGTH (J, CODCOUN) )= STRLINE (1:STRLEN)

STOHOLD= STOHOLD+MINIMUM

INDXCOU= 0
END IF

DO 140 INDXPTR= MINIM,MAXIM
DO 1100 II= 0,MM
IF (HOLDER(J,3,II).EQ.INDXPTR) THEN
CK=1
IIHOLD= II
GO TO 199
END IF
CONTINUE

CONTINUE

IF (CK.EQ.l) THEN
IF (INDXCOU.EQ.0) GO TCO 1917
STRLINE(1:)= CHAR(27)



1917

140

1444

STRLINE(2:)= CHAR(82)
STRLINE(3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR*INDXCOU+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN}= STRLEN
LINE (J, CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE (1:STRLEN)

CONTINUE
STRLINE(1:)= CHAR(27)
STRLINE(2:)= CHAR(82)
STRLINE(3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR*1+HOLDER(J, 4, ITHOLD))

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN)= STRLEN
LINE (J, CODCOUN) (1:LENGTH (J, CODCOUN) )= STRLINE (1:STRLEN)

INDXCOU= 0
CK= 0

ELSE IF ((INDXCOU.EQ.MAXIXC)
.OR. (INDXPTR.EQ.SCREEN)) THEN

STRLINE(1:)= CHAR(27)
STRLINE(2:)= CHAR(82)
STRLINE(3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCOCN (MULTR*INDXCOU+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN) = STRLEN
LINE (J, CODCOUN) (1:LENGTH (J, CODCOUN) )= STRLINE (1:STRLEN)

INDXCOU= 1
ELSE
INDXCOU= INDXCOU+1
END IF
CONTINUE

MINIMUM= MAXIM+1
STOHOLD= STOHOLD+MINIMUM-MINIM

CONTINUE
IF (STOHOLD.LT.SCREEN) THEN
STRLINE (1:)= CHAR(27)

STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR*MAXIXC+0)

CODCOUN= CODCOUN+1

LENGTH (J, CODCOUN) = STRLEN

LINE (J, CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE (1:STRLEN)
STOHOLD= STOHOLD+MAXIXC

GO TO 1444

ELSE



[

v

!

1
acoaao

aQaoO

aaon

i
£

I

I

I

STRLINE (1:)= CHAR(27)
STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR* (SCREEN- (STOHOLD-MAXIXC))+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN) = STRLEN
LINE (J,CODCOUN) (1:LENGTH(J,CODCOUN)} )= STRLINE (1:STRLEN)

INDXCOU= 0
END IF

CODARY (J)= CODCOUN

Critical XYz90
SELF90= SELF90+1
J= SELF90

End critical

IF (J.LE.NN) GO TO 90

The following is the code executed by the output
processor.

ELSE IF (ME.EQ.NPROC) THEN
J=0

Limiting the output to 50 iterations.

NN = 50

Checking the rendezvous flag.

33 CONTINUE
IF (RENDEZ.EQ.1) GO TO 88

VQuUS= J
MAXIM= -65535
MINIM= 65535
303 CONTINUE
IF (COUNT(J).NE.(NPROC-1}) GO TO 303

FLAG= 0
FLAG22= 0
FLAG33= 0

DO 35 I= O0,MM
IF (HOLDER(J,3,I).GT.MAXIM) MAXIM= HOLDER(J, 3,I)
IF (HOLDER(J,3,I).LT.MINIM) MINIM= HOLDER(J, 3,I)

SLOPE= (HOLDER(J,1,I+1)-HOLDER(J,1,I))
IF (0.0 .NE. (HOLDER(J,0,I+1)-HOLDER(J,0,I))) THEN
SLOPE= SLOPE/ (HOLDER(J, 0, I+1)-HOLDER(J, 0, I))
ELSE

SLOPE = 0.0
END IF
TEMP= ABS (SLOPE)

IF ((0.0.LE,.TEMP) .AND. (TEMP,LT.0.167)) THEN
COLOR= 12

ELSE IF ((0.167.LE.TEMP).AND.(TEMP.LT.0.333)) THEN
COLOR= 4



I | N
|

1

\

el

1 ! I

il

OOaQO0

35

214

ELSE IF ((0.333.LE.TEMP) .AND. (TEMP.LT.0.5)) THEN

COLOR= 11

ELSE IF ((0.5.LE.TEMP) .AND. (TEMP.LT.0.667)) THEN
COLOR= 10

ELSE IF ((0.667.LE.TEMP) .AND. (TEMP.LT.0.833)) THEN
COLCR= 3

ELSE IF ((0.833.LE.TEMP) .AND.(TEMP.LT.1.0)) THEN
COLOR= 9

ELSE IF ((1.0.LE.TEMP).AND. (TEMP.LT.1.167)) THEN
COLOR= 7

ELSE IF ((1.167.LE.TEMP).AND. (TEMP.LT.1.333)) THEN
COLOR= 8

ELSE IF ((1.333.LE.TEMP).AND, (TEMP.LT.1.5)) THEN
COLOR= 2

ELSE IF ((1.5.LE.TEMP) .AND.(TEMP.LT.1.667)) THEN
COLOR= 15

ELSE IF ((1.667.LE.TEMP) .AND.(TEMP.LT.1.833)) THEN
COLOR= 6

ELSE
COLOR= 1

END IF

IF (SLOPE.GT.(0.0) THEN
CKSLOPE= 1

ELSE IF (SLOPE.EQ.0.0) THEN
CKSLOPE= 0

ELSE
CKSLOPE= -1

END IF

IF ((FLAG.EQ.0O) .AND. (SLOPE.NE.0.0)) THEN
CKSLOP1l= CKSLOPE
FLAG= 1

END IF

IF ((CKSLOPE.EQ.CKSLOP1l) .OR. (CKSLOPE.EQ.0)) THEN
HOLDER(J, 4, I+1)= COLOR
IF (FLAG33.EQ.0) THEN

FLAG22= 0
FLAG33= 1
HOLDER(J,4,I)= 12
END IF
ELSE
IF (FLAG22.EQ.0) THEN
FLAG22= 1
FLAG33 = 0
GO TO 35
END IF
HOLDER (J, 4,I)= COLOR
END IF
CONTINUE

This section of the program is the inline encoding of
graphics routine, RUNLENGTH WRITE. This subroutine
loads color indices into the pixel viewport.

CODCOUN= 0
CKHOLD= 0

CK= 0

MINIMUM= MINIM-1
STOHOLD= MAXIXC

CONTINUE
IF (STOHOLD.LT.MINIMUM) THEN
STRLINE (1:)= CHAR(27)



STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR*MAXIXC+0)

CODCOUN= CODCOUN+1

LENGTH (J, CODCOUN) = STRLEN

LINE (J, CODCOUN) (1:LENGTH (J,CODCOUN) }= STRLINE (1:STRLEN)
STOHOLD= STOHOLD+MAXIXC

GO TO 214

ELSE
STRLINE(1l:)= CHAR(27)
STRLINE(2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

MINIMUM= MINIMUM- (STOHOLD-MAXIXC)

CALL DECCON(1)
CALL DECCON (MULTR*MINIMUM+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN) = STRLEN
LINE (J, CODCOUN) (1:LENGTH (J, CODCOUN) )= STRLINE (1:STRLEN)

STOHOLD= STCOHOLD+MINIMUM

INDXCOU= 0
END IF

DO 40 INDXPTR= MINIM,MAXIM
DO 100 II= O0,MM
IF (HOLDER(J,3,II).EQ.INDXPTR) THEN
CK=1
ITHOLD= II
GO TO 99
END IF
100 CONTINUE
99 CONTINUE

IF (CK.EQ.1l) THEN
IF (INDXCOU.EQ.(0) GO TO 917
STRLINE(1l:)= CHAR(27)
STRLINE (2:)= CHAR(82)
STRLINE(3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR*INDXCOU+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN)= STRLEN
LINE (J, CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE(1:STRLEN)

917 CONTINUE
STRLINE(1:)= CHAR(27)
STRLINE(2:)= CHAR(82)
STRLINE(3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR*1+HOLDER(J, 4, IIHOLD) )



{

I

USN AR AU | O SNRN U il

40

444

88

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN) = STRLEN
LINE (J,CODCOUN) (1:LENGTH (J, CODCOUN) )= STRLINE (1l:STRLEN)

INDXCOU= 0

CK= 0
ELSE IF ((INDXCOU.EQ.MAXIXC)
.OR. (INDXPTR.EQ.SCREEN)) THEN

STRLINE (1:)= CHAR(27)
STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR*INDXCOU+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN)= STRLEN
LINE (J,CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE (1:STRLEN)

INDXCOU= 1
ELSE
INDXCOU= INDXCQU+1
END IF
CONTINUE

MINIMUM= MAXIM+1
STOHOLD= STOHOLD+MINIMUM-MINIM

CONTINUE

IF (STOHOLD.LT.SCREEN) THEN
STRLINE (1:)= CHAR(27)
STRLINE(2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR*MAXIXC+0)

CODCOUN= CODCOUN+1

LENGTH (J, CODCOUN) = STRLEN

LINE (J,CODCOUN) (1:LENGTH(J,CODCOUN) )= STRLINE (1:STRLEN)
STOHOLD= STOHOLD+MAXIXC

GO TO 444

ELSE
STRLINE (1:)= CHAR(27)
STRLINE (2:)= CHAR({82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR* (SCREEN- (STOHOLD-MAXIXC) ) +0)

CODCOUN= CQODCOUN+1
LENGTH(J, CODCOUN)= STRLEN
LINE(J, CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE (1:STRLEN)

INDXCOU= 0
END IF

CODARY (J)= CODCOUN

CONTINUE
IF (CODARY(J).EQ.0) GO TO 88



a4 Ul I B H

iy

6l

1

18]

201

3333

CALL PXPOSIT(0,479)

DO 3 CODCOUN= 1,CODARY (J)
WRITE(6,*) LINE(J,CODCOUN) (1:LENGTH (J,CODCOUN) )
CONTINUE

J=J + 1
IF (J.NE.NN+1) GO TO 33

END TIF

IT2= timer ()
TIMEl1 (ME)= IT2-IT1

WRITE (6, *)
WRITE (6, *)
Barrier

TTEND= timer ()

DO 3333 I= 1,NPROC
WRITE (6, *) ‘Processor /,I

WRITE (6, *)
WRITE (6,*) ’'Sectionl time solving the problem= ',
WRITE(6,*) ’Section time = ', TIME1l (I)
WRITE (6, *)
CONTINUE

WRITE (6, *)"The total time is 7, (TTEND-TTBEG)
End barrier

Join
END

SUBROUTINE DECCON (X)

aaoOn

aaa

eNeRe!

10

This graphics subroutine converts integer parameter
in host syntax.

CCOMMON DE, CON

CHARACTER *15 DE

INTEGER X,ABSNUM, DEC, CON

INTEGER BIN,HI1,HI2,LO1,HI1DEC,HI2DEC,LO1DEC
DIMENSION BIN(0:15),HI1(0:6),HI2(0:6),L01(0:6)
DIMENSION DEC(0:15)

Initialization of arrays and local variables.

DO 5 K= 20,6
HI1 (K)
HI2 (K)
LO1 (K)

CONTINUE

DO 10 K = 0,15
BIN(K) = 0
DEC(K) = 2**K

CONTINUE

HI1DEC

HI2DEC

LO1DEC

0
0
0

g

0
0
0

W

Converts the INTEGER parameter to binary.

TIME (I)



{

[

1]

O

aoaan

aaOaan

QOO0

15

20

25

30

ABSNUM = TIABS (X)
DO 15 I = 15,0,-1
IF (ABSNUM .GE. DEC(I)) THEN
ABSNUM = ABSNUM - DEC(I)

BIN(I) =1
ELSE IF (ABSNUM .EQ. 0) THEN
GOTO 20
ENDIF
CONTINUE

Assigning bits.

HI1(6) =1
HI2(6) =1
LO1(6) = 0
LO1(5) =1

DO 25 J = 0,5
HI1(J) = BIN(J+10)
HI2 (J) = BIN(J+4)
IF (J .LE. 3) THEN
LO1(J) = BIN(J)

ENDIF
CONTINUE
IF (X .GE. 0) THEN
Lo1(4) =1
ENDIF

Calculating the ASCII decimal equivalent
(ADE) for array of bits.

DO 30 K = 0,6
IF (HI1(K) .NE. Q) THEN
HI1DEC = HI1DEC + DEC (K)
ENDIF
IF (HI2(K) .NE. 0) THEN
HI2DEC = HIZDEC + DEC(K)
ENDIF
IF (LO1(K) .NE. 0) THEN
LO1DEC = LO1DEC + DEC(K)
ENDIF
CONTINUE

Transmitting the converted parameter to the
terminal.

CON= CON + 1
DE (CON:)= CHAR(HI1DEC)
CON= CON + 1
DE (CON:)= CHAR(HI2DEC)
CON= CON + 1
DE (CON:)= CHAR (LOIDEC)
RETURN
END

SUBROUTINE XYCON(L,M)

This graphics subroutine converts xy-coordinates
in host syntax.

COMMON PACK,NUM

CHARACTER*15 PACK

INTEGER NUM

INTEGER L,M,HIYDEC,EXTDEC,LOYDEC, RIXDEC



h INTEGER LCXDEC,ABSNUM, DEC, XBIN, YBIN, EXTRA
INTEGER HIY,LOY,HIX,LOX
DIMENSION XBIN(0:11),YBIN(0:11),EXTRA(0:6)

— DIMENSION HIY(0:6),L0Y(0:6),HIX(0:6),LOX(0:6)
DIMENSION DEC(0:15)

C
— C Initialization of arrays and local variables.
o

DO 5 K = 0,11
YBIN(K) = 0
=0

= XBIN (K)
5 CONTINUE
— DO 10 K = 0,6
EXTRA(K) = 0
HIX(K) = 0
; HIY(K) = 0
— LOY(K) = 0
LOX(K) =0
10 CONTINUE
- DO 13 K = 0,15
DEC(K) = 2**K
— 13 CONTINUE
- HIYDEC = 0
EXTDEC = 0
LOYDEC = 0
— HIXDEC = 0
LOXDEC = 0
C
c Converts the INTEGER parameters to binary.
= C
ABSNUM = IABS(L)
DO 15 K=1,2
— Do 20 1= 11,0,-1
IF (ABSNUM .GE. DEC(I)) THEN
ABSNUM = ABSNUM - DEC(I)
- IF (K .EQ. 1) THEN
- XBIN(I) = 1
ELSE
o YBIN(I) = 1
j— ENDIF
= ELSE IF (ABSNUM .EQ. 0) THEN
GOTO 25
ENDIF
—_ 20 CONTINUE
S 25 ABSNUM = TABS (M)
15 CONTINUE
C
— C Assigning bits.
C
HIY(6) = 0
HIY(5) =1
== EXTRA(6) = 1
EXTRA(5) = 1
EXTRA(4) = 0
— EXTRA (3) = YBIN(1)
B EXTRA(2) = YBIN(OQ)
EXTRA (1) = XBIN(1)
) EXTRA(0) = XBIN(O0)
- LoY(6) =1
LoY(5) =1
_ HIX(6) = 0
e HIX(5) =1



ha LOX (6) 1

LOX (5) 0

DO 30 J = 0,4
HIY (J) YBIN (J+7)
LOY (J) YBIN (J+2)
HIX (J) XBIN (J+7)
LOX (J) XBIN (J+2)

— 30 CONTINUE

[

Calculating the ASCII decimal equivalent
(ADE) for array of bits.

aOaaa

DO 35 K= 0,6
IF (HIY(K) .NE. 0) THEN
— HIYDEC = HIYDEC + DEC(K)
ENDIF
IF (HIX(K) .NE. 0) THEN
HIXDEC = HIXDEC + DEC(K)
= ENDIF
IF (LOY(K) .NE. O0) THEN
- LOYDEC = LOYDEC + DEC(K)
o ENDIF
— IF (LOX(K) .NE. {) THEN
LOXDEC = LOXDEC + DEC (K}
ENDIF
IF (EXTRA(K) .NE. 0) THEN
EXTDEC = EXTDEC + DEC(K)
ENDIF
o 35 CONTINUE

I

I

Transimitting the converted parameter to
the terminal.

O0OOn0n

1

NUM = NUM + 1

PACK(NUM:) = CHAR(HIYDEC)
NUM = NUM + 1

PACK (NUM:) = CHAR(EXTDEC)
NUM = NUM + 1

PACK(NUM:) = CHAR({LOYDEC)
llllll NUM = NUM + 1

. PACK(NUM:) = CHAR(HIXDEC)
NUM = NUM + 1

PACK(NUM:) = CHAR(LOXDEC)
= RETURN

= END

(1

SUBROUTINE PXBEGIN (SURNUM, ALU,BPPIX)

This graphics subroutine sets up the terminal
for subsequent pixel operations.

U

aaoaan

COMMCN PX, BEG
CHARACTER *15 PX
INTEGER SURNUM, ALU,BPPIX,BEG

1

PX(1l:)= CHAR(27)
PX(2:)= CHAR(82)
PX(3:)= CHAR(85)
BEG= 3

— CALL DECCON (SURNUM)
ez CALL DECCON (ALU)
CALL DECCON (BPPIX)
WRITE (6, *) PX(1l:BEG)
= RETURN

il



aaana

aaoaoaan

END

SUBRQUTINE PXPOSIT (XLOW, YLOW)

This graphics subroutine sets up the position

of the pixel beam in the pixel viewport.

COMMON PX,POSIT

CHARACTER *15 PX

INTEGER XLOW, YLOW,POSIT
PX(1:)= CHAR(27)
PX(2:)= CHAR(82)
PX(3:)= CHAR(72)
POSIT= 3
CALL XYCON (XLOW, YLOW)
WRITE (6, *) PX(1:POSIT)

RETURN

END

SUBROUTINE PXVIEW(XLOW,YLOW,XHIGH, YHIGH)

This graphics subroutine specifies the pixel

viewport’s size and position in graphics
memory.

COMMON PX,VIEW

CHARACTER *15 PX

INTEGER XLOW,YLOW, XHIGH, YHIGH, VIEW
PX(1l:)= CHAR(27)
PX(2:)= CHAR(82)
PX(3:)= CHAR(83)
VIEW= 3
CALL XYCON(XLOW, YLOW)
CALL XYCON(XHIGH, YHIGH)
WRITE(6,*) PX(1l:VIEW)

RETURN

END



11

1
ii

{I
i
i

(i
‘

APPENDIX B



i

1

I

1

!

It

]‘!

aaa

aQOaQaaa

anan a0 anoa Qoo

aaaQ

This is th

Force WAVE
String vib
Declaratio

Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared
Private
Common
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
End declar

Barrier

e preschedule version

of NPROC ident ME
ration program
ns

CHARACTER*15 LINE(0:51,0:800)
INTEGER INCNVAL,JJJ,M,N,RENDEZ
INTEGER TTBEG, TTEND, COUNT (0:800)
INTEGER HOLDER(0:400,0:4,0:401)
INTEGER LENGTH(0:51,0:800),V0US
INTEGER CODARY(0:800),IT1,IT2,TIME1(1:16)
LOGICAL XX,XYZ
REAL TI,ALPHA,L
DOUBLE PRECISION LAMBDA,W(0:400,0:401)
CHARACTER*15 STRLINE
STRLINE, STRLEN
DOUBLE PRECISION LAMB2
INTEGER I,J,JJ,II,CELSIZ,SCREEN
INTEGER BITS, CODCOUN, XEND, YEND
INTEGER IST,IEND,MAXIM,MINIM,STRLEN
INTEGER MAXIXC,MULTR, INDXPTR, INDXCOU
INTEGER MM, NN,MINIMUM
INTEGER STOHOLD, ITHOLD
INTEGER CKHOLD,CK
INTEGER CKSLOPE,CKSLOP1l,FLAG,FLAG22,FLAG33
INTEGER COLOR
REAL H,X,K,T,SLOPE
REAL TEMP
ations

Begin program timer

TTBEG=

timer ()

CALL PXBEGIN(1l,11,4)
CALL PXVIEW(0,0,639,479)

Input of t
WRITE (6
READ *,
WRITE (6

Input of t
WRITE (6
READ *,
WRITE (6

Input of t
WRITE (6
READ *,
WRITE (6

Input of t

he length of the string.

,*) "Enter the length of the string: '

L

*) L

he time limitation.

+*) ’'Enter the time limit: '

TI

*) TI

he number of subdivisions for the string.

*) 'Enter the number of subdivisions for the string:
M
P *) M

he number of subdivisions for the time.

r



NP K®!

OO0

Qoo

QOO

OaoaQa

aaan

WRITE(6,*) ’‘Enter the number of time subdivisions:
READ *,N
WRITE(6,*) N

Input of the value for alpha.

WRITE (6,*) 'Enter the value for alpha: ’
READ *,ALPHA
WRITE (6,*) ALPHA

The following is used to insure the convergence and stability
of the numerical solution of the one-dimensional wave equation.
The value of N, the number of time subdivisions, is incremented
by 50 in a effort to insure convergence and stability.

LAMBDA = 0.
INCNVAL= N

N= INCNVAL

H= L/M

K= TI/N

LAMBDA= K*ALPHA/H

INCNVAL= N + 50

IF (LAMBDA .GT. 1.) GO TO 5

WRITE (6, *)
WRITE(6,*) "The value of N is ’',N
WRITE (6, *)
JJJ= 1
End barrier

Beginning of individual processor timer

ITl= timer ()
MM= M
NN= N

The following private variables are initialized for use
in the graphic routine RUNLENGTH WRITE.

XEND= 639
YEND= 479
BITS= 4

MULTR= 2**BITS
MAXIXC= INT(65535/MULTR)
SCREEN= (XEND+1) * (YEND+1)

This is the point where the NPROC-1 computation
processors are separated from the output processor.

IF (ME.NE.NPROC) THEN
H= L/MM

K= TI/NN
LAMB2= (K*ALPHA/H) **2

Limiting the output to 50 iterations

NN= 50



1

QOOQa0

aaoaon

QOO0

aaaaoaan

aaan

[P RS!

This loop computes all of the boundary points for the
vibrating string.

Modified preschedule DO-CONTINUE loop

DO 6 J = (0) + ME - 1, (NN), NPROC - 1
X= 0
W(0,J)= SIN(3.1415927*0.)

HOLDER (J, 0,0)

HOLDER (J, 2,0)

HOLDER(J,1,0)= HOLDER(J,2,0)+240

HOLDER(J,3,0)= (YEND-HOLDER(J,1,0))* (XEND+1)
+ +HOLDER(J,0,0) +1

INT (X*100+10)
INT(W(0,J))

o on

X= MM*H

W(MM,J)= SIN(3.1415927*L)

HOLDER(J, 0,MM)= INT(X*100+10)

HOLDER(J,2,MM)= INT(W(MM,J))

HOLDER(J,1,MM)= HOLDER(J,2,MM)+240

HOLDER(J, 3,MM)= (YEND-HOLDER(J,1,MM)) * (XEND+1)
+ +HOLDER(J,0,MM) +1

The following two values are used in the pixel
color computations.

HOLDER(J,0,MM+1)= INT({( (MM+1)*H*100+10)
HOLDER(J,1,MM+1)= HOLDER(J,1,MM)

The initialization of the array associated with
the counting semaphores for the completion of
computations for the interior points for rows
0,1,...,M-1

COUNT (J)= 0
6 End presched DO

This loop computes the initial conditions, the
interior points for row 0 and row 1.

Modified preschedule DO-CONTINUE loop

Do 20 II = (1) + ME - 1, (MM-1), NPRCC - 1
X= II*H

Row j=0 computations

W(II,0)= SIN(3.1415927*II*H)
HOLDER (0,0, II)= INT(x*100+10)
HOLDER(0,2,II)= INT(W(II,0))
HOLDER(0,1,II)= HOLDER(0,2,II)+240
HOLDER(0,3,II)= (YEND-HOLDER(0,1,II))* (XEND+1)
+ +HOLDER (0, 0, II)+1

Row j=1 computations

W(II,1l)= (1.-LAMB2)*W(II,O0)
LAMB2/2.

* (SIN(3.1415927*(I1+1)*H)
+ SIN(3.1415927+ (II-1)*H))
+ K*0

++ + +
+

HOLDER(1,0,II)= INT(x*100+10)



= HOLDER(1,2,II)= INT(W(II,1l))
HOLDER(1,1,II)= HOLDER(1l,2,II)+240
HOLDER(1,3,II)= (YEND-HOLDER(1,1,II))* (XEND+1)
+ +HOLDER(1,0,II)+1
20 End presched DO

CELSIZ= INT((MM-1)/(NPROC-1))+1

Critical XYZ
COUNT (0)= COUNT(0) + 1
End critical

831 CONTINUE
IF (COUNT(0).NE. (NPROC-1)) GO TO 831

25 CONTINUE
— J= JJJ
= T= J * K

C Modified preschedule DO-CONTINUE loop

DO 30 I = (1) + ((CELSIZ))*(ME - 1), (MM-1),
+ { (CELSTIZ))* (NPROC - 1)
IST= (ME-1)*CELSIZ+1
IEND= MIN(ME*CELSIZ,MM-1)
DO 26 II= IST,IEND
X= II * H
W(II,J+1)= 2.*(1.-LAMB2)*W(II,J)
+ LAMB2* (W(II+1l,J)+W(II-1,J))
- W(II,J-1) + COS(2.*3.1415927*T)
+ / 2.71828182845%*(110*T)

!

!
+ +

|

il

HOLDER (J+1,0,II)= INT(X*100+10)
HOLDER(J+1,2,II)= INT(W(II,J+1))
HOLDER(J+1,1,1II)= HOLDER(J+1,2,1II)+240
HOLDER (J+1,3,II)= (YEND-HOLDER{J+1,1,II)})* (XEND+1)
+ +HOLDER(J+1,0,II)+1
26 CONTINUE
30 End presched DO

LI

il

Critical XX
IF ((COUNT(J)+1) .EQ. (NPROC-1)) THEN
JJJ= JJJ + 1
END IF
COUNT (J)= COUNT(J) + 1
End critical

|
1]

31 CONTINUE
IF (COUNT (J) .NE. (NPROC-1)) GO TO 31

IF (JJJ.NE.NN) GO TO 25

N

COUNT (J+1)= COUNT (J)

The occurrence of the processor rendezvous.

|
0aa

- RENDEZ= 1

C Modified preschedule DO-CONTINUE loop.

I

DO 90 J = (VOUS+1) + ME - 1, (NN), NPRCC - 1

MAXIM= -65535
MINIM= 65535

Il



= 3303 CONTINUE
IF (COUNT(J) .NE. (NPROC-1)) GO TO 3303

— C
C Computations for pixel colors based on slope
C computations.
C
N FLAG= 0
FLAG22= 0
FLAG33= 0
DO 335 I= 0,MM
= IF (HOLDER(J,3,I).GT.MAXIM) MAXIM= HOLDER(J,3,I)
IF (HOLDER(J,3,I).LT.MINIM) MINIM= HOLDER(J,3,I)
p— SLOPE= (HOLDER(J,1,I+1}-HOLDER(J,1,I))
IF (0.0 .NE. (HOLDER(J,0,I+1)-HOLDER(J,0,I))) THEN
SLOPE= SLOPE/ (HOLDER(J,0,I+1)-HOLDER(J,0,I))
L ELSE
- SLOPE = 0.0
END IF
TEMP= ABS (SLOPE)
= IF ((0.0.LE.TEMP) .AND. (TEMP.LT.0.167)) THEN
COLOR= 12
= ELSE IF ((0.167.LE.TEMP).AND. (TEMP.LT.0.333)) THEN
s COLOR= 4
ELSE IF ((0.333.LE.TEMP).AND. (TEMP.LT.0.5}) THEN
COLOR= 11
= ELSE IF ((0.5.LE.TEMP) .AND. (TEMP.LT.0.667)) THEN
= COLOR= 10
ELSE IF ((0.667.LE.TEMP).AND.(TEMP.LT.0.833)) THEN
COLOR= 3
ELSE IF ((0.833.LE.TEMP).AND. (TEMP,LT.1.0)) THEN
COLOR= 9
ELSE IF ((1.0.LE.TEMP).AND. (TEMP.LT.1.167)) THEN
i COLOR= 7
— ELSE IF ((1.167.LE.TEMP).AND. (TEMP.LT.1.333)) THEN
COLOR= 8
ELSE IF ((1.333.LE.TEMP).AND. (TEMP.LT.1.5)) THEN
-— COLOR= 2
= ELSE IF ((1.5.LE.TEMP).AND. (TEMP.LT.1.667)) THEN
COLOR= 15
o ELSE IF ((1.667.LE.TEMP).AND.(TEMP.LT.1.833)) THEN
= COLOR= 6
= ELSE
COLOR= 1
END IF

=

IF (SLOPE.GT.0.0) THEN

CKSLOPE= 1
ELSE IF (SLOPE.EQ.0.0) THEN
= CKSLOPE= 0
ELSE
CKSLOPE= -1
END IF

IF ((FLAG.EQ.0) .AND.(SLOPE.NE.0.0)}) THEN
CKSLOP1= CKSLOPE
FLAG= 1

END IF

i IF ((CKSLOPE.EQ.CKSLOPl).OR. (CKSLOPE.EQ.0)) THEN
~ HOLDER (J,4,I+1)= COLOR
IF (FLAG33.EQ.0}) THEN
FLAG22= 0
B FLAG33= 1



i

{1l

OO0

335

14

1100
199

HOLDER(J,4,I)= 12

END IF
ELSE
IF (FLAG22.EQ.0) THEN
FLAG22= 1
FLAG33 = 0
GO TO 335
END IF
HOLDER(J,4,I)= COLOR
END IF
CONTINUE

This section of the program is the inline encoding of
graphics routine, RUNLENGTH WRITE. This subroutine
loads color indices into the pixel viewport.

CODCOUN= @
CKHOLD= 0

CK= 0

MINIMUM= MINIM-1
STOHOLD= MAXIXC

CONTINUE

IF (STOHOLD.LT.MINIMUM) THEN
STRLINE (1:)= CHAR(27)
STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR*MAXIXC+0)

CODCOUN= CODCOUN+1

LENGTH (J, CODCOUN) = STRLEN

LINE (J, CODCOUN) (1:LENGTH (J, CODCOUN) )= STRLINE (1:STRLEN)
STOHOLD= STOHOLD+MAXTIXC

GO TO 14

ELSE
STRLINE(1:)= CHAR(27)
STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

MINIMUM= MINIMUM- (STOHOLD-MAXIXC)

CALL DECCON (1)
CALL DECCON (MULTR*MINIMUM+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN} = STRLEN
LINE (J, CODCOUN) (1:LENGTH{J, CODCOUN} )= STRLINE (1:STRLEN)

STOHOLD= STOHOLD+MINIMUM
INDXCOU= 0
END IF

DO 140 INDXPTR= MINIM,MAXIM
DO 1100 II= 0,MM
IF (HOLDER(J,3,II).EQ.INDXPTR) THEN
CK=1
IIHOLD= IT
GO TO 199
END IF
CONTINUE
CONTINUE



{

1917

140

1444

IF (CK.EQ.1) THEN
IF (INDXCQOU.EQ.0) GO TO 1917
STRLINE(1:)= CHAR(27)
STRLINE(2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR*INDXCOU+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN) = STRLEN
LINE (J,CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE (l:S5TRLEN)

CONTINUE
STRLINE(1:)= CHAR(Z27)
STRLINE(2:)= CHAR(82)
STRLINE (3:)= CHAR({76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR*1+HOLDER(J,4,IIHOLD))

CODCOUN= CODCOUN+1
LENGTH (J,CODCOUN)= STRLEN
LINE (J, CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE(1l:STRLEN)

INDXCOU= 0
CK= 0
ELSE IF ((INDXCOU.EQ.MAXIXC)
.OR. (INDXPTR.EQ.SCREEN) )} THEN
STRLINE(1:)= CHAR(27)
STRLINE(2:)= CHAR(82)
STRLINE(3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON{(MULTR*INDXCQU+OQ})

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN)= STRLEN

LINE (J,CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE(1l:STRLEN)
INDXCCU= 1
ELSE
INDXCOU= INDXCOU+1
END IF
CONTINUE

MINIMUM= MAXIM+1
STOHOLD= STOHOLD+MINIMUM-MINIM

CONTINUE

IF (STOHOLD.LT.SCREEN) THEN
STRLINE (1:)= CHAR(27)
STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR*MAXIXC+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN)= STRLEN
LINE (J, CODCOUN) (1:LENGTH(J, CODCOUN) )= STRLINE (1:STRLEN)



aaoaa

aoaon

aOa

90

33

303

STOHOLD= STOHOLD+MAXIXC

GO TO 1444

ELSE
STRLINE (1:)= CHAR(27)
STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR* (SCREEN- (STOHOLD-MAXIXC))}+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN} = STRLEN
LINE (J, CODCOUN) (1:LENGTH(J,CODCOUN} )= STRLINE (1:STRLEN)

INDXCOU= 0
END IF

CODARY (J)= CODCOUN
End presched DO

The following is the code executed by the ocutput
processor.

ELSE IF (ME.EQ.NPROC) THEN
J= 0
Limiting the output to 50 iterations.

NN= 50

Checking for the rendezvous flag

CONTINUE
IF (RENDEZ.EQ.1)}) GO TO 88

vOouUsS= J

MAXIM= -65535

MINIM= 65535

CONTINUE

IF (COUNT (J) .NE. (NPROC-1)) GO TO 303

FLAG= 0
FLAG22= 0
FLAG33= 0

DO 35 I= 0,MM
IF (HOLDER(J,3,I).GT.MAXIM) MAXIM= HOLDER(J, 3,I)
IF (HOLDER(J,3,I).LT.MINIM) MINIM= HOLDER(J,3,I)

SLOPE= (HOLDER(J,1,I+1)-HOLDER(J,1,1I))

IF (0.0 .NE. (HOLDER(J,0,I+1)-HOLDER(J,0,I))} THEN
SLOPE= SLOPE/ (HOLDER(J,0,I+1)-HOLDER(J,0,I})
ELSE
SLOPE = 0.0
END IF

TEMP= ABS (SLOPE)

IF ((0.0.LE.TEMP) .AND, (TEMP.LT.0.167)) THEN
COLOR= 12

ELSE IF ((0.167.LE.TEMP).AND.(TEMP.LT.0.333)) THEN
COLOR= 4



aaoaaoao

ELSE IF ((0.333.LE.TEMP).AND.(TEMP.LT.0.5)) THEN

COLOR= 11

ELSE IF ((0.5.LE.TEMP) .AND. (TEMP.LT.0.667)) THEN
COLOR= 10

ELSE IF ((0.667.LE.TEMP).AND. (TEMP.LT.0.833)) THEN
COLOR= 3

ELSE IF ((0.833.LE.TEMP).AND. (TEMP.LT.1.0)) THEN
COLOR= 9

ELSE IF ((1.0.LE.TEMP) .AND.(TEMP.LT.1.167)) THEN
COLOR= 7

ELSE IF ((1.167.LE.TEMP).AND.(TEMP.LT.1.333)) THEN
COLOR= 8

ELSE IF ((1.333.LE.TEMP).AND.(TEMP.LT.1.5})) THEN
COLOR= 2

ELSE IF ((1.5.LE.TEMP) .AND.(TEMP.LT.1.667)) THEN
COLOR= 15

ELSE IF ((1.667.LE.TEMP).AND. (TEMP.LT.1.833)) THEN
COLOR= 6

ELSE
COLOR= 1

END IF

IF (SLOPE.GT.0.0) THEN
CKSLOPE= 1

ELSE IF (SLOPE.EQ.0.0) THEN
CKSLOPE= 0

ELSE
CKSLOPE= -1

END IF

IF ((FLAG.EQ.0) .AND. (SLOPE.NE.0.0)) THEN
CKSLOP1l= CKSLOPE
FLAG= 1

END IF

IF ((CKSLOPE.EQ.CKSLOP1l) .0OR. (CKSLOPE.EQ.0)) THEN
HOLDER(J,4,I+1)= COLOR
IF (FLAG33.EQ.0) THEN

FLAG22= 0
FLAG33= 1
HOLDER(J,4,I)= 12
END IF
ELSE
IF (FLAG22.EQ.Q0) THEN
FLAG22= 1
FLAG33 = 0
GO TO 35
END IF
HOLDER(J,4,I)= COLOR
END IF

35 CONTINUE

This section of the program is the inline encoding of
graphics routine, RUNLENGTH WRITE. This subroutine
loads color indices into the pixel viewport.

CODCOUN= 0

CKHOLD= 0

CK= 0

MINIMUM= MINIM-1
STOHOLD= MAXIXC

214 CONTINUE
IF (STOHOLD.LT.MINIMUM) THEN
STRLINE (1:)= CHAR(27)



b STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR*MAXIXC+0)

— CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN) = STRLEN
LINE (J,CODCOUN) (1:LENGTH(J, CODCOUN) }= STRLINE (1:STRLEN)
STCHOLD= STOHOLD+MAXIXC

GO TO 214
ELSE
STRLINE (1:)= CHAR(27)
- STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

MINIMUM= MINIMUM- (STOHOLD-MAXIXC)

CALL DECCON(1)
- CALL DECCON (MULTR*MINIMUM+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN) = STRLEN
LINE (J, CODCOUN} (1:LENGTH (J, CODCOUN) }= STRLINE (1:STRLEN)

STOHOLD= STOHOLD+MINIMUM

INDXCOU= {
END IF

i1

DO 40 INDXPTR= MINIM,MAXIM
DO 100 II= 0,MM
IF (HOLDER(J,3,II).EQ.INDXPTR) THEN
CK=1
ITHOLD= II
GO TO 99
END IF
100 CONTINUE
99 CONTINUE

7 IF (CK.EQ.1) THEN

P IF (INDXCOU.EQ.0) GO TO 917
: STRLINE (1:)= CHAR(27)
- STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

? %; CALL DECCON (1)
5 CALL DECCON (MULTR*INDXCQU+0Q)

= CODCOUN= CODCOUN+1
= LENGTH (J, CODCOUN) = STRLEN
LINE (J, CODCOUN) (1:LENGTH (J, CODCOUN) )= STRLINE (1:STRLEN)

917 CONTINUE

_ STRLINE (1:)= CHAR(27)

= STRLINE (2:)= CHAR(82)

: STRLINE (3:)= CHAR(76)
STRLEN= 3




40

444

CALL DECCON (1)
CALL DECCON (MULTR*1+HOLDER({J, 4, ITHOLD))

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN) = STRLEN

LINE(J, CODCOUN) (1:LENGTH (J, CODCOUN) )= STRLINE (1:STRLEN)
INDXCOU= 0
CK= 0

ELSE IF ((INDXCOU.EQ.MAXIXC)
.OR. (INDXPTR.EQ.SCREEN)) THEN
STRLINE(1:)= CHAR(Z27)

STRLINE(2:)= CHAR(82)
STRLINE(3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON {(MULTR*INDXCOU+O0)

CODCOUN= CODCOUN+1
LENGTH (J,CODCOUN}= STRLEN
LINE (J,CODCOUN) (1:LENGTH (J,CODCOUN} )= STRLINE (1:STRLEN)

INDXCOU= 1
ELSE
INDXCOU= INDXCOU+1
END IF
CONTINUE

MINIMUM= MAXIM+1
STOHOLD= STOHOLD+MINIMUM-MINIM

CONTINUE

IF (STOHOLD.LT.SCREEN) THEN
STRLINE (1:)= CHAR(27)
STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR*MAXIXC+0)

CODCOUN= CODCOUN+1

LENGTH (J, CODCOUN}) = STRLEN

LINE(J, CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE (1:S5TRLEN)
STOHOLD= STOHOLD+MAXIXC

GO TO 444

ELSE
STRLINE (1:)= CHAR(27)
STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR* (SCREEN- (STOHOLD-MAXIXC))+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN) = STRLEN
LINE (J,CODCOQOUN} (1:LENGTH(J,CODCOUN) )= STRLINE (1:STRLEN)

INDXCOU= 0
END IF

CODARY (J)= CODCOUN



(I

88

aaaan

3

201

Qoo

aaaQ

3333

Qo

anaQ

CONTINUE
IF (CODARY(J).EQ.0) GO TO 88

Setting pixel starting position and depicting the

solution.
CALL PXPOSIT(0,479)

DO 3 CODCOUN= 1,CODARY (J)
WRITE (6, *) LINE(J,CODCOUN) (1:LENGTH (J,CODCOUN) )
CONTINUE

J=J + 1
IF (J.NE.NN+1) GO TO 33

END IF

Stopping of individual processor timer

IT2= timer ()
TIMEl (ME)= IT2-IT1

WRITE (6, *)
WRITE (6, *)

Qutput of timing results and stopping the program timer.

Barrier
TTEND= timer ()

DO 3333 I = 1,NPRCC
WRITE(6,*) ’Processor ’,I
WRITE(6,%*) ’Section time = ', TIME1l(I)
WRITE (6, *)
WRITE (6, *)
CONTINUE

WRITE (6, *)’'The total time is ’, (TTEND-TTBEG)
End barrier

Join
END

SUBROUTINE DECCON (X)

This graphics subroutine converts integer parameter
in host syntax.

COMMON DE, CON

CHARACTER *15 DE

INTEGER X, ABSNUM,DEC, CON

INTEGER BIN,HI1,HI2,LOl,HI1DEC,HIZ2DEC,LO1DEC
DIMENSION BIN{(0:15),HI1(0:6),HI2(0:6),L01(0:6)
DIMENSION DEC(0:15)

Initialization of arrays and local variables.

DO 5 K= 0,6
HI1 (K)
HI2 (K)

0
0
LO1 (K) 0

[ 't



QOO

Qo0

anaaaon

aaOan

5 CONTINUE
DO 10 XK = 0,15
BIN (K) 0
DEC (K) 2**K
10 CONTINUE
HI1DEC
HI2DEC
LO1DEC

0
0
0

Converts the INTEGER parameter to binary.

ABSNUM = TABS(X)
DO 15 I = 15,0,-1
IF (ABSNUM .GE. DEC(I)) THEN

ABSNUM = ABSNUM - DEC(I)
BIN(I) =1
ELSE IF (ABSNUM .EQ. 0) THEN
GOTO 20
ENDIF
15 CONTINUE

Assigning bits.

20 HI1 (6)
HIZ2 (6)
LC1(6)
LO1(5)

DG 25 J = 0,5
HI1 (J) = BIN(J+10)
HI2 (J) = BIN(J+4)
IF (J .LE. 3) THEN
LO1(J) = BIN(J)

ENDIF
25 CONTINUE
IF (X .GE. 0) THEN
L01(4) =1
ENDIF

Calculating the ASCII decimal equivalent
(ADE) for array of bits.

DO 30 K = 0,6
IF (HI1(K) .NE. 0) THEN
HI1DEC = HI1DEC + DEC(K)
ENDIF
IF (HI2(K) .NE. 0) THEN
HI2DEC = HI2DEC + DEC(K)
ENDIF
IF (LO1(K) .NE. 0) THEN
LO1DEC = LO1DEC + DEC(K)
ENDIF
30 CONTINUE

Transmitting the converted parameter to the
terminal.

CON= CON + 1
DE (CON:)= CHAR(HI1DEC)
CON= CON + 1
DE (CON:)= CHAR(HIZ2DEC)
CON= CON + 1
DE (CON:)= CHAR(LOI1DEC)
RETURN
END



SUBROUTINE XYCON(L,M)

This graphics subroutine converts xy-coordinates
in host syntax.

OO0

COMMON PACK,NUM

CHARACTER*15 PACK

INTEGER NUM

INTEGER L,M,HIYDEC, EXTDEC, LOYDEC, HIXDEC
INTEGER LOXDEC,ABSNUM,DEC, XBIN, YBIN,EXTRA
INTEGER HIY,LOY,HIX,LOX

DIMENSION XBIN(0:11),YBIN(0:11),EXTRA(0:6)
DIMENSION HIY(0:6),L0Y(0:6),HIX(0:6),LOX(0:6)
DIMENSION DEC(0:15)

Initialization of arrays and local variables.

QO

DO 5 K= 0,11
YBIN(K) =
XBIN(K) =

5 CONTINUE

0
0

DO 10 K = 0,

EXTRA (K)

HIX (K)

HIY (K)

LOY (K)

LOX (K)

10 CONTINUE

cCOOoOC | ™

DO 13 K = 0,15
DEC(K) = 2**K
13 CONTINUE

HIYDEC
EXTDEC
LOYDEC
HIXDEC
LOXDEC

|| T I
[N oReNoNe

C Converts the INTEGER parameters to binary.

ABSNUM = IABS(L)
DO 15 K=1,2
Do 20 1= 11,0,-1
IF¥ (ABSNUM .GE. DEC(I}) THEN
ABSNUM = ABSNUM - DEC(I)
IF (K .EQ. 1) THEN
XBIN(I) =1
ELSE
YBIN(I) =1
ENDIF
ELSE IF (ABSNUM .EQ. 0) THEN
GOTO 25
ENDIF
20 CONTINUE
25 ABSNUM = IABS (M)
15 CONTINUE

C Assigning bits.

HIY(6) = 0
HIY(5) =1



IV

!

b

OO0aa

aaoaa

QOO

30

35

EXTRA (6) 1

EXTRA(5) =1

EXTRA(4) = 0

EXTRA(3) = YBIN(1)

EXTRA(2) = YBIN(O)

EXTRA (1) = XBIN(1l)

EXTRA(0) = XBIN(Q)

LoY(6) =1

LOY (D) =1

HIX(6) = 0

HIX(5) =1

LOX(6) =1

LOX(5) = 0

DO 30 J = 0,4
HIY (J) = YBIN({(J+7)
LOY (J) = YBIN(J+2)
HIX (J) = XBIN(J+7)
LOX (J) = XBIN(J+2)

CONTINUE

Calculating the

ASCII decimal equivalent

(ADE) for array of bits.
DO 35 K= 0,6
IF (HIY(K) .NE. 0) THEN
HIYDEC = HIYDEC + DEC(K)
ENDIF
IF (HIX(K) .NE. 0) THEN
HIXDEC = HIXDEC + DEC(K)
ENDIF
IF (LOY(K) .NE. 0) THEN
LOYDEC = LOYDEC + DEC(K)
ENDIF
IF (LOX(K) .NE. 0) THEN
LOXDEC = LOXDEC + DEC(K)}
ENDIF
IF (EXTRA(K) .NE. 0) THEN
EXTDEC = EXTDEC + DEC(K)
ENDIF
CONTINUE

Transimitting the
the terminal.

NUM = NUM +
PACK (NUM:) =
NUM = NUM +
PACK(NUM:) =
NUM = NUM +
PACK (NUM:)
NUM = NUM +
PACK (NUM:) =
NUM = NUM +
PACK (NUM:) =

RETURN

END

SUBROUTINE PXBEG

This graphics su
for subsequent p

COMMON PX, BEG
CHARACTER *15 PX

converted parameter to

1CHAR(HIYDEC)
lCHAR(EXTDEC)
1CHAR(LOYDEC)
1CHAR(HIXDEC)
1CHAR(LOXDEC)

IN (SURNUM, ALU, BPPIX)

broutine sets up the terminal

ixel operations.



aOaoan

Qa0

INTEGER SURNUM,ALU,BPPIX,BEG

PX(1:)= CHAR(27)
PX(2:)= CHAR(82)
PX(3:)= CHAR(85)
BEG= 3
CALL DECCON (SURNUM)
CALL DECCON (ALU)
CALL DECCON (BPPIX)
WRITE (6,*) PX(1:BEG)
RETURN
END

SUBROUTINE PXPOSIT (XLOW, YLOW)

This graphics subroutine sets up the position
of the pixel beam in the pixel viewport.

COMMON PX,POSIT

CHARACTER *15 PX

INTEGER XLOW, YLOW,POSIT
PX(1l:)= CHAR(27)
PX(2:)= CHAR(82)
PX({3:)= CHAR(72)
POSIT= 3
CALL XYCON (XLOW, YLOW)
WRITE(6,*) PX(1:POSIT)

RETURN

END

SUBROUTINE PXVIEW(XLOW, YLOW,XHIGH,YHIGH)

This graphics subroutine specifies the pixel
viewport’s size and position in graphics
memory.

COMMON PX,VIEW
CHARACTER *15 PX
INTEGER XLOW,YLOW, XHIGH, YHIGH,VIEW

PX(1:)= CHAR(27)
PX(2:)= CHAR(82)
PX(3:)= CHAR(83)
VIEW= 3

CALL XYCON (XLOW, YLOW)
CALL XYCON(XHIGH, YHIGH)
WRITE (6,*) PX(1l:VIEW)
RETURN
END



1l

APPENDIX C



[OEON®!

[eEO NP RO RS

QOO0 aaoa aaon oo

QOO

This is th

Force WAVE
String vib
Declaratio

Shared
Shared
Shared
Shared
Shared
Shared
Shared
Shared
Private
Common
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
Private
End declar

Begin prog

e sequential version

of NPROC ident ME
ration program
ns

CHARACTER*15 LINE(0:51,0:800)
INTEGER INCNVAL,JJJ,M,N
INTEGER TTBEG, TTEND, COUNT (0:800)
INTEGER HOLDER (0:400,0:4,0:401)
INTEGER LENGTH(0:51,0:800),VOUS
INTEGER CODARY (0:800),IT1,IT2,TIME1(1:16)
REAL L,TI,ALPHA
DOUBLE PRECISION LAMBDA,W(0:400,0:401)
CHARACTER*15 STRLINE
STRLINE, STRLEN
DOUBLE PRECISION LAMB2
INTEGER I,J,JJ,II,SCREEN
INTEGER BITS, CODCOUN, XEND, YEND
INTEGER MAXIM,MINIM,STRLEN
INTEGER MAXIXC,MULTR, INDXPTR, INDXCOU
INTEGER COUN,MM, NN, PTRCOUN, MINIMUM
INTEGER STOHOLD,IIHOLD
INTEGER CKHOLD,CK

INTEGER CKSLOPE,CKSLOP1,FLAG,FLAG22,FLAG33

INTEGER LBEG, LEND,COLOR
REAL H,X,K,T,SLOPE

REAL TEMP
ations

ram timer

TTBEG= timer ()

CALL PXBEG
CALL PXVIE

Input of t
WRITE (6, *)
READ *,L

WRITE (6, *)
Input of t
WRITE (6, *)
READ *,TI

WRITE (6, *)
Input of t
WRITE (6, *)
READ *,M

WRITE(6, *)
Input of t
WRITE (6, *)

READ *,N
WRITE(6, *)

IN(1,11,4)
W(0,0,639,479)

he length of the string.

"Enter the length of the string: ’
L

he time limitation.

’Enter the time limit: 7

TI

he number of subdivisions for the string.

"Enter the number of subdivisions for the string:

M
he number of subdivisions for the time.

"Enter the number of time subdivisions:

N

r

r



aa

aaoaoaan

OO0

QOO0

aan

OO0

Input of the value for alpha.

WRITE (6, *) ‘Enter the value for alpha: '
READ *,ALPHA
WRITE (6, *) ALPHA

The following is used to insure the convergence and stability
of the numerical solution of the one-dimensional wave equation.
The value of N, the number of time subdivisions, is incremented
by 50 in an effort to insure convergence and stability.

LAMBDA = 0.
INCNVAL= N
N= INCNVAL
H= L/M
K= TI/N

LAMBDA= K*ALPHA/H

INCNVAL= N + 50

IF (LAMBDA .GT. 1.) GO TO 5
WRITE (6, *)

WRITE (6, *) "'The value of N is ’,N
WRITE (6, *)

JJd= 1

Beginning of individual processor timer
ITl= timer ()

MM= M
NN= N

The following variables are initialized for use
in the graphic routine RUNLENGTH WRITE.

XEND= 639
YEND= 479
BITS= 4

MULTR= 2**BITS
MAXIXC= INT(65535/MULTR)
SCREEN= (XEND+1) * (YEND+1)

H= L/MM
K= TI/NN
LAMB2= (K*ALPHA/H) **2

Limiting the output to 50 iterations

NN= 50

This loop computes all of the boundary points for the
vibrating string.

DO 6 J = 0, NN
X=0
W(0,J)= SIN(3.1415827*0.)
HOLDER(J,0,0)= INT(X*100+10)
HOLDER(J,2,0)= INT(W(0,J))
HOLDER(J,1,0)= HOLDER(J,2,0)+240
HOLDER(J, 3,0)= (YEND-BOLDER(J,1,0)) * (XEND+1)

+ +HOLDER(J,0,0)+1



oo

OO0

OO0

OO0

OO0

+

++ + +

X= MM*H

W (MM, J)= SIN(3.1415927*L)

HOLDER(J, 0,MM)= INT(X*100+10)

HOLDER(J, 2,MM)= INT (W (MM, J))

HOLDER(J, 1,MM)= HOLDER(J, 2,MM) +240

HOLDER(J, 3,MM)= (YEND-HOLDER(J,1,MM)) * (XEND+1)
+HOLDER (J, 0, MM) +1

The following two values are used in the pixel
color computations.

HOLDER(J,0,MM+1)= INT({(MM+1)*H*100+10)
HOLDER(J,1,MM+1)= HOLDER(J,1l,MM)

The initialization of the array associated with
the counting semaphores for the completion of
computations for the interior points for rows
0,..,M-1

COUNT (J)= 0
CONTINUE

This loop computes the initial conditions, the
interior points for rows 0 and 1.

po 20 IT =1, MM-1
X= II*H

Row 3=0 computations

W(II,0)= SIN(3.1415927*II*H)

HOLDER (0,0, II)= INT(x*100+10)

HOLDER (0,2, II)= INT(W(II,0))

HOLDER (0,1, II)= HOLDER(0,2,II)+240

HOLDER (0,3, II)= (YEND-HOLDER(0,1,II))* (XEND+1)
+HOLDER (0,0, II)+1

Row j=0 computations

W(II,1l)= (1.-LAMB2)*W(II,O0)

LAMB2/2.

* (SIN(3.1415927*(II+1)*H)
+ SIN({(3.1415927*(II-1)*H))
+ K*Q

+

HOLDER({1,0,II)= INT(x*100+10)

HOLDER(1,2,II)= INT(W(II,1))

HOLDER(1,1,IXI)= HOLDER(1l,2,II)+240

HOLDER(1,3,IT)= (YEND-HOLDER{1,1,II))* (XEND+1)
+HOLDER (1,0, II)+1

20 CONTINUE

COUNT (0)= COUNT(0) + 1

25 CONTINUE

J= JJJ

T= J * K

DO 26 II= 1,MM-1
X= II * H

W(II,J+1)= 2.*(1.-LAMB2)*W(II,J)
+ LAMB2* (W(II+1,J)+W(II-1,J))



aOan

aaaa

<+

- W(II,J-1) + COS(2.*3.1415927+*T)
/ 2.71828182845** (110*T)

HOLDER (J+1,0,II)= INT({(X*100+10)

HOLDER({(J+1,2,II)= INT(W(II,J+1))

HOLDER(J+1,1,II)= HOLDER(J+1,2,ITI)+240

HOLDER (J+1,3,II)= (YEND-HOLDER{J+1,1,II))* (XEND+1)
+HOLDER (J+1,0,II)+1

26 CONTINUE

33

JJJ= JJJg + 1
IF (JJJ.NE.NN) GO TO 25
COUNT (J+1)= COUNT (J)

J= 0

Limiting the output to 50 iterations
NN= 50
CONTINUE

MAXIM= -65535
MINIM= 65535

Computations for pixel colors based on slope
computations.

FLAG= O
FLAG22= 0
FLAG33= 0

DO 35 I= 0,MM
IF (HOLDER(J,3,I).GT.MAXIM) MAXIM= HOLDER(J, 3,I)
IF (HOLDER(J,3,I).LT.MINIM) MINIM= HOLDER(J, 3, I)

SLOPE= (HOLDER(J,1,I+1)-HOLDER(J,1,I))
IF (0.0 .NE. (HOLDER({(J,0,I+1)-HOLDER(J,0,I))) THEN
SLOPE= SLOPE/ (HOLDER(J, 0, I+1)-HOLDER(J,0,I))
ELSE
SLOPE = 0.0
END IF
TEMP= ABS (SLOPE)

IF ((0.0.LE.TEMP) .AND. (TEMP.LT.0.167)) THEN

COLOR= 12

ELSE IF ((0.167.LE.TEMP) .AND.(TEMP.LT.0.333)) THEN
COLOR= 4

ELSE IF ((0.333.LE.TEMP).AND.(TEMP.LT.0.5)) THEN
COLOR= 11

ELSE IF ((0.5.LE.TEMP).AND.(TEMP.LT.0.667)) THEN
COLCR= 10

ELSE IF ((0.667.LE.TEMP).AND. (TEMP.LT.0.833)) THEN
COLOR= 3

ELSE IF ((0.833.LE.TEMP).AND. (TEMP.LT.1.0)) THEN
COLOR= 9

ELSE IF ((1.0.LE.TEMP) .AND.(TEMP.LT.1.167)) THEN
COLOR= 7

ELSE IF ((1.167.LE.TEMP) .AND.(TEMP.LT.1.333)) THEN
COLOR= 8

ELSE IF ((1.333.LE.TEMP) .AND.(TEMP.LT.1.5)) THEN
COLOR= 2

ELSE IF ((1.5.LE.TEMP).AND. (TEMP.LT.1.667}) THEN
COLOR= 15



n

p
3
]

,\

aOaQaan

35

214

ELSE IF ((l1.667.LE.TEMP) .AND. (TEMP.LT.1.833)) THEN

CCLOR= 6
ELSE

COLOR= 1
END IF

IF (SLOPE.GT.0.0) THEN

CKSLOPE= 1

ELSE IF (SLOPE.EQ.0.0) THEN
CKSLOPE= 0

ELSE
CKSLOPE= -1

END IF

IF ((FLAG.EQ.0).AND. (SLOPE.NE.(0.0)) THEN
CKSLOP1l= CKSLOPE
FLAG= 1

END IF

IF ((CKSLOPE.EQ.CKSLOP1l) .0OR. (CKSLOPE.EQ.Q)) THEN
HOLDER({J,4,I+1)= COLOR
IF (FLAG33.EQ.0) THEN

FLAG22= 0
FLAG33= 1
HOLDER(J,4,I)= 12
END IF
ELSE
IF (FLAG22.EQ.0) THEN
FLAG22= 1
FLAG33 = 0
GO TO 35
END IF
HOLDER(J,4,I)= COLOR
END IF
CONTINUE

This section of the program is the inline encoding of
graphics routine, RUNLENGTH WRITE. This subroutine
loads color indices into the pixel viewport.

CODCOUN= 0
CKHOLD= 0

CK= 0

MINIMUM= MINIM-1
STOHOLD= MAXIXC

CONTINUE
IF (STOHOLD.LT.MINIMUM) THEN
STRLINE(1l:)= CHAR(27)

STRLINE (2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR*MAXIXC+0)

CODCOUN= CODCOUN+1

LENGTH (J, CODCOUN) = STRLEN

LINE (J, CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE (1:STRLEN)
STOHOLD= STOHOLD+MAXIXC

GO TO 214

ELSE
STRLINE (1:)= CHAR(27)
STRLINE (2:)= CHAR(82)



STRLINE(3:)= CHAR(76)
STRLEN= 3

MINIMUM= MINIMUM- (STOHOLD-MAXIXC)

CALL DECCON (1)
CALL DECCON (MULTR*MINIMUM+O0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN)= STRLEN
LINE (J, CODCOUN) (1:LENGTH (J, CODCOUN) )= STRLINE (1:STRLEN)

STOHOLD= STOHOLD+MINIMUM

INDXCOU= 0
END IF

DO 40 INDXPTR= MINIM, MAXIM
DO 100 II= O,MM
IF (HOLDER(J,3,II).EQ.INDXPTR) THEN
CK=1
ITHOLD= II
GO TO 99
END IF
100 CONTINUE
99 CONTINUE

IF (CK.EQ.l1l) THEN
IF (INDXCOU.EQ.0) GO TO 917
STRLINE({1l:)= CHAR(27)
STRLINE(Z2:)= CHAR(82)
STRLINE(3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR*INDXCOU+0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN)= STRLEN
LINE (J,CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE (1:STRLEN)

917 CONTINUE
STRLINE(1l:)= CHAR(27)
STRLINE(2:)= CHAR(82)
STRLINE(3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON(MULTR*1+HOLDER(J,4, ITHOLD))

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN)= STRLEN
LINE (J,CODCOUN) (1:LENGTE (J,CODCOUN) )= STRLINE (1:STRLEN)

INDXCOU= 0
CK= 0
ELSE IF ((INDXCOU.EQ.MAXIXC)
+ .OR. (INDXPTR.EQ.SCREEN) ) THEN

STRLINE(1:)= CHAR(27)
STRLINE(2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR*INDXCOU+Q)



40

444

201

CODCQOUN= CODCOUN+1
LENGTH (J, CODCOUN) = STRLEN
LINE (J,CODCOUN) (1:LENGTH (J,CODCOUN) )= STRLINE (1l:STRLEN)

INDXCOU= 1
ELSE
INDXCOU= INDXCOU+1
END IF
CONTINUE

MINIMUM= MAXIM+1
STOHOLD= STCHOLD+MINIMUM-MINIM

CONTINUE
IF (STOHOLD.LT.SCREEN) THEN
STRLINE (1:)= CHAR(27)

STRLINE(2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON (1)
CALL DECCON (MULTR*MAXIXC+0)

CODCOUN= CODCQUN+1

LENGTH (J, CODCOUN) = STRLEN

LINE (J, CODCOUN} (1:LENGTH (J, CODCOUN) }= STRLINE (1:STRLEN)
STOHOLD= STOHOLD+MAXIXC

GO TO 444

ELSE
STRLINE(1:)= CHAR(27)
STRLINE(2:)= CHAR(82)
STRLINE (3:)= CHAR(76)
STRLEN= 3

CALL DECCON(1)
CALL DECCON (MULTR* (SCREEN-(STOHOLD-MAXIXC) ) +0)

CODCOUN= CODCOUN+1
LENGTH (J, CODCOUN} = STRLEN
LINE (J, CODCOUN) (1:LENGTH(J, CODCOUN) }= STRLINE (1:5TRLEN)

INDXCOU= 0
END IF

CODARY (J)= CODCOUN
CALL PXPOSIT(0,479)
DO 3 CODCOUN= 1, CODARY (J)

WRITE (6, *) LINE (J,CODCOUN) (1:LENGTH (J,CODCOUN) )}
CONTINUE

Jg=J + 1
IF (J.NE.NN+1l) GO TO 33

IT2= timer ()
TIMEl (ME)= IT2-IT1

WRITE (6, *)
WRITE (6, *)

Barrier
TTEND= timer ()



DO 3333 I = 1,NPROC
WRITE (6,*) ’'Processor ’,1I
WRITE(6,*) ’'Section time = 7, TIME1l(I)
WRITE (6, *)
WRITE (6, *)
3333 CONTINUE

WRITE (6, *) ' The total time is ', (TTEND-TTBEG)
End barrier

Join
END
SUBROUTINE DECCON (X)

This graphics subroutine converts integer parameter
in host syntax.

Qaaan

COMMON DE,CON

CHARACTER *15 DE

INTEGER X,ABSNUM, DEC, CON

INTEGER BIN,HI1,HI2,LO1,HI1DEC,HIZ2DEC,LO1DEC
DIMENSION BIN(0:15),BI1(0:6),HI2(0:6},L01(0:6)
DIMENSION DEC(0:15)

Initialization of arrays and local variables.

aaQ

DO 5 K= 0,6
HI1 (K)
HI2 (K)
LO1 (K)
5 CONTINUE
DO 10 K = 0,15
BIN(K) = 0
DEC (K) = 2**K
10 CONTINUE
HI1DEC
HI2DEC
LO1DEC

0
0
0

0w

0
0
0

Converts the INTEGER parameter to binary.

aaon

ABSNUM = IABS (X)
po 15 I = 15,0,-1
IF (ABSNUM .GE. DEC(I)) THEN
ABSNUM = ABSNUM - DEC(I)
BIN(I) =1
ELSE IF (ABSNUM .EQ. 0) THEN
GOTO 20
ENDIF
15 CONTINUE

Assigning bits.

aaoo

20 HI1 (6)
HI2(6)
LO1 (6)
LO1(5)

PO

DO 25 J = 0,5
HI1 (J) = BIN(J+10)
HI2 (J) = BIN(J+4)
IF (J .LE. 3) THEN



aOQaa

OO0

aOOaaO

aon

LO1(J) = BIN(J)
ENDIF
25 CONTINUE

IF (X .GE. 0) THEN
L01(4) =1
ENDIF

Calculating the ASCII decimal equivalent
(ADE) for array of bits.

DO 30 K = 0,6
JF (HI1(K) .NE. 0) THEN
HI1DEC = HI1DEC + DEC(K)
ENDIF
IF (HI2(K) .NE. 0) THEN
HI2DEC = HI2DEC + DEC(K)
ENDIF
IF (LO1(K) .NE. Q) THEN
LO1DEC = LO1DEC + DEC(K)
ENDIF
30 CONTINUE

Transmitting the converted parameter to the
terminal.

CON= CON + 1
DE (CON:)= CHAR(HI1DEC)
CON= CON + 1
DE (CON:)= CHAR(HI2DEC)
CON= CON + 1
DE (CON:)= CHAR(LO1DEC)
RETURN
END

SUBROUTINE XYCON(L,M)

This graphics subroutine converts xy-coordinates
in host syntax.

COMMON PACK, NUM

CHARACTER*15 PACK

INTEGER NUM

INTEGER L,M,HIYDEC,EXTDEC,LOYDEC, HIXDEC
INTEGER LOXDEC, ABSNUM,DEC, XBIN, YBIN, EXTRA
INTEGER HIY,LOY,HIX,LOX

DIMENSION XBIN(0:11),YBIN(0:11),EXTRA(0:6)
DIMENSION HIY(0:6),L0Y(0:6),HIX(0:6),LOX(0:6)
DIMENSION DEC(0:15)

Initialization of arrays and local variables.

DO 5 K = 0,11
YBIN (K)
XBIN(K)
5 CONTINUE

0
0

DO 10 K =
EXTRA (K
HIX (K)
HIY (K)
LOY (K)
LOX (K)
10 CONTINUE

14

mnel—o
coool o



aoaao

DO 13 K = 0,15
DEC(K) = 2**K
13 CONTINUE

HIYDEC
EXTDEC
LOYDEC
HIXDEC
LOXDEC

nonon
OO OOO

Converts the INTEGER parameters to binary.

ABSNUM = IABS(L)
DO 15 K=1,2
po 20 1= 11,0,-1
IF (ABSNUM .GE. DEC(I)) THEN
ABSNUM = ABSNUM - DEC(I)
IF (K .EQ. 1) THEN

XBIN(I) = 1
ELSE
YBIN(I) =1
ENDIF
ELSE IF (ABSNUM .EQ. () THEN
GOTO 25
ENDIF
20 CONTINUE
25 ABSNUM = IABS (M)
15 CONTINUE
Assigning bits.
HIY(6) = O
HIY(5) =1
EXTRA(6) = 1
EXTRA(5) = 1
EXTRA(4) = 0
EXTRA(3) = YBIN(1)
EXTRA(2) = YBIN(O0)
EXTRA (1) = XBIN(1l)
EXTRA(0) = XBIN(O0)
oY (6) =1
LOY(5) =1
HIX(6) =0
HIX(5) =1
LOX(6) =1
LOX(5) =0
DO 30 J = 0,4
HIY (J) = YBIN(J+7)
LOY (J) = YBIN(J+2)
HIX (J) = XBIN(J+7)
LOX (J) = XBIN(J+2)
30 CONTINUE

Calculating the ASCII decimal equivalent
(ADE) for array of bits.

DO 35 K= 0,6

IF (HIY(K) .NE. 0) THEN
HIYDEC = HIYDEC + DEC(K)

ENDIF

IF (HIX(K) .NE. 0) THEN
HIXDEC = HIXDEC + DEC (K)

ENDIF

IF (LOY(K) .NE. 0) THEN
LOYDEC = LOYDEC + DEC(K)



QOO0

QOO0

[oNORONP!

ENDIF

IF (LOX(K) .NE. 0) THEN
LOXDEC = LOXDEC + DEC(K)

ENDIF

IF (EXTRA(K) .NE. 0) THEN
EXTDEC = EXTDEC + DEC(K)

ENDIF

35 CONTINUE

Transimitting the converted parameter to
the terminal.

NUM = NUM + 1
PACK(NUM:) = CHAR(HIYDEC)
NUM = NUM + 1
PACK (NUM:) = CHAR(EXTDEC)
NUM = NUM + 1
PACK(NUM:) = CHAR(LOYDEC)
NUM = NUM + 1
PACK(NUM:) = CHAR(HIXDEC)
NUM = NUM + 1
PACK(NUM:) = CHAR(LOXDEC)
RETURN
END

SUBROUTINE PXBEGIN (SURNUM, ALU,BPPIX)

This graphics subroutine sets up the terminal
for subsequent pixel operations.

COMMON PX, BEG
CHARACTER *15 PX
INTEGER SURNUM,ALU,BPPIX,BEG

PX(1l:)= CHAR(27)
PX(2:)= CHAR(82)
PX(3:)= CHAR(85)
BEG= 3
CALL DECCON (SURNUM)
CALL DECCON (ALU)
CALL DECCON (BPPIX)
WRITE (6, *) PX(1:BEG)
RETURN
END

SUBROUTINE PXPOSIT (XLOW, YLOW)

This graphics subroutine sets up the position
of the pixel beam in the pixel viewport.

COMMON PX,POSIT

CHARACTER *15 PX

INTEGER XLOW, YLOW,POSIT
PX(1:)= CHAR(27)
PX(2:)= CHAR(82)
PX(3:)= CHAR(72)
POSIT= 3
CALL XYCON (XLOW, YLOW)
WRITE (6,*) PX(1:POSIT)

RETURN

END



aaoaaa

SUBROUTINE PXVIEW(XLOW,YLOW,XHIGH, YHIGH)

This graphics subroutine specifies the pixel
viewport’s size and position in graphics
memory .

COMMON PX,VIEW

CHARACTER *15 PX

INTEGER XLOW,YLOW, XHIGH, YHIGH, VIEW
PX(1:)= CHAR(27)
PX(2:)= CHAR(82)
PX(3:)= CHAR(83)
VIEW= 3
CALL XYCON (XLCW, YLOW)
CALL XYCON(XHIGH, YHIGH)
WRITE (6,*) PX(1:VIEW)

RETURN

END



